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CONTINUITY OF SOLUTIONS OF RICCATI EQUATIONS
FOR THE DISCRETE–TIME JLQP
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The continuity of the solutions of difference and algebraic coupled Riccati equations for the discrete-time Markovian jump
linear quadratic control problem as a function of coefficients is verified. The line of reasoning goes through the use of the
minimum property formulated analogously to the one for coupled continuous Riccati equations presented by Wonham and
a set of comparison theorems.
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1. Introduction

The continuity of various types of Riccati equations has
been considered in various contexts in the last decade.
In (Czornik, 1996; 2000; Delchamps, 1980; Faibusovich,
1986; Lancaster and Rodman, 1995; Rodman, 1980),
the authors examine the continuity of continuous-time
algebraic Riccati equations under different conditions.
Czornik and Sragovich (1995) consider the situation when
the coefficients of a continuous-time algebraic Riccati
equation tend to coefficients for which the solution does
not exist. The continuity of discrete algebraic equations is
shown in (Chen, 1985). In (Chojnowska-Michaliket al.,
1992) the continuity in the uniform operator topology of
the solution of the Riccati equations in Hilbert space is
verified.

In the discrete-time Markovian jump linear quadratic
control problem on a finite time interval the following set
of coupled Riccati difference equations appears (Chizeck
et al., 1986):

Pk+1(P, j) = Ã
′
(j)F̃k(j)Ã(j)− Ã

′
(j)F̃k(j)B̃(j)

×
(
R(j) + B̃

′
(j)F̃k(j)B̃(j)

)−1

× B̃
′
(j)F̃k(j)Ã(j) + Q(j), (1)

j ∈ S, k = 0, 1, . . . , where

F̃k(j) =
∑
i∈S

p̃(j, i)Pk(P, i) (2)

with terminal conditionsP0(P, j) = P ≥ 0. Here

Ã(j) ∈ Rn,n, B̃(j) ∈ Rn,m, Q(j) ∈ Rn,n, Q(j) ≥ 0,
R(j) ∈ Rm,m, R(j) > 0, p̃(j, i) ∈ R, p̃(j, i) ≥ 0,∑

i∈S p̃(j, i) = 1, j ∈ S, and S is a finite set that con-
sists of |S| elements. In the case of an infinite time inter-
val the difference Riccati equations become the following
coupled algebraic Riccati equations:

P (j) = Ã
′
(j)F̃ (j)Ã(j)− Ã

′
(j)F̃ (j)B̃(j)

×
(
R(j) + B̃

′
(j)F̃ (j)B̃(j)

)−1

× B̃
′
(j)F̃ (j)Ã(j) + Q(j), (3)

where
F̃ (j) =

∑
i∈S

p̃(j, i)P (i). (4)

The objective of this paper is to show that the solutions
of both the differential (1) and algebraic (3) equations are
continuous functions of their coefficients.

2. Main Result

We follow the notation of (Abou-Kandilet al., 1995):

A(j) =
√

p(j, j)Ã(j), B(j)

=
√

p̃(j, j)B̃(j)R−1/2(j), p(i, j)

=
p̃(i, j)
p̃(j, j)

, i, j ∈ S.
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Using these abbreviations, we can rewrite (1) and (3) as

Pk+1(P, j) =A
′
(j)Fk(j)A(j)−A

′
(j)Fk(j)B(j)

×
(
I + B

′
(j)Fk(j)B(j)

)−1

×B
′
(j)Fk(j)A(j) + Q(j), (5)

where
Fk(j) =

∑
i∈S

p(j, i)Pk(P, i), (6)

and

P (j) =A
′
(j)F (j)A(j)

−A
′
(j)F (j)B(j)

(
I + B

′
(j)F (j)B(j)

)−1

×B
′
(j)F (j)A(j) + Q(j), (7)

where
F (j) =

∑
i∈S

p(j, i)P (i). (8)

An easy computation shows that (1) and (3) can be
rewritten as

Pk+1(P, j) = (A(j)−B(j)Lk(j))
′
Fk(j)

× (A(j)−B(j)Lk(j))

+ L
′

k(j)Lk(j) + Q(j), (9)

where

Lk(j) =
(
I+B

′
(j)Fk(j)B(j)

)−1
B

′
(j)Fk(j)A(j), (10)

Fk(j) is given by (6) and

P (j) = (A(j)−B(j)L(j))
′
F (j)

(
A(j)−B(j)L(j)

)
+ L

′
(j)L(j) + Q(j). (11)

Here

L(j) =
(
I + B

′
(j)F (j)B(j)

)−1
B

′
(j)F (j)A(j) (12)

and F (j) is given by (8).

Throughout the paper we will denote by‖X‖ the
operator norm of a matrixX. In our future deliberations,
we will make the following assumptions about the coeffi-
cientsA(j), B(j), Q(j):

(A) There existsε > 0 such that for allÂ(j) ∈ Rn,n,
B̂(j) ∈ Rn,m, Q̂(j) ∈ Rn,n, Q̂(j) ≥ 0 such
that ‖A(j) − Â(j)‖ < ε, ‖B(j) − B̂(j)‖ < ε,
‖Q(j) − Q̂(j)‖ < ε, eqn. (11) with A(j), B(j),
Q(j) replaced byÂ(j), B̂(j), Q̂(j), respectively,
has a unique solution̂P (j), j ∈ S.

(B) The solutionPk(P, j) of (9) converges ask → ∞
and

lim
k→∞

Pk(P̂ , j) = P (j), j ∈ S (13)

for any initial valueP̂ .

(C) The matricesA(j) − B(j)L(j), j ∈ S are stable
(i.e. all eigenvalues have absolute values less than 1).

Various conditions under which assumptions (A), (B)
and (C) hold, and the connection between the stability of
the matricesA(j) − B(j)L(j), j ∈ S and that of the
original closed-loop system (1) are discussed in (Abou-
Kandil et al., 1995; Bourleset al., 1990; Chizecket al.,
1986).

Now we formulate the discrete-time version of the
minimum property (Wonham, 1971, p. 193) of the solu-
tion of (1) and (3).

Theorem 1. (Minimum property) Let P̄k(P, j) and
P̄ (j), j ∈ S be the solutions of (9) and (11) withLk(j)
and L(j) replaced by an arbitrary matrix̄L(j) ∈ Rn,m,
respectively. ThenPk(P, j) ≤ P̄k(P, j) and P (j) ≤
P̄ (j).

As in (Wonham, 1971, p. 193), the proof is a straight-
forward consequence of the fact thatL(j) given by (12)
minimizes the right-hand side of (11) regarded as a func-
tion of L(j).

Now we can formulate the continuity results.

Theorem 2. Assume that the sequence(A(l)(j),
B(l)(j), Q(l)(j)), A(l)(j) ∈ Rn,n, B(l)(j) ∈ Rn,m,
Q(l)(j) ∈ Rn×n, j ∈ S, l ∈ N is such that the lim-
its of A(l)(j), B(l)(j), Q(l)(j) as l → ∞, exist for each
j ∈ S,

A(j) = lim
l→∞

A(l)(j), B(j) = lim
l→∞

limB(l)(j),

Q(j) = lim
k→∞

Q(l)(j), j ∈ S, (14)

and the boundary system

A(j), B(j), Q(j), p(i, j); i, j ∈ S

satisfies Assumptions (A)–(C). Then

lim
l→∞

P
(l)
k (P, j) = Pk(P, j), j ∈ S,

where P
(l)
k (P, j), j ∈ S, are the solutions of the equa-

tions

P
(l)
k+1(P, j) =

(
A(l)(j)

)′
F

(l)
k (j)A(l)(j)

−
(
A(l)(j)

)′
F

(l)
k (j)B(l)(j)

×
(
I +

(
B(l)(j)

)′
F

(l)
k (j)B(l)(j)

)−1

×
(
B(l)(j)

)′
F

(l)
k (j)A(l)(j)+Q(l)(j), (15)
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where

F
(l)
k (j) =

∑
i∈S

p(j, i)P (l)
k (P, i).

Proof. Fix M > 0. We first show that

max
k≤M,l∈N

∥∥P
(l)
k (P, j)

∥∥ ≤ c(P,M). (16)

Fix k ≤ M and letP̄ (l)
k (P, j), j ∈ S, l ∈ N be the solu-

tion of (9) with A(j), B(j), Q(j) and Lk(j) replaced by
A(l)(j), B(l)(j), Q(l)(j) and L(j), respectively, where
L(j) is given by (12). By the minimum property it is
sufficient to prove that (16) holds for̄P (l)

k (P, j). Since
A(j) − B(j)L(j) is stable, (14) shows that there exist
positive constantsa > 0, 1 > b > 0 such that∥∥(

X(l)(j)
)k∥∥ < abk, k ∈ N (17)

for all l ∈ N , where X(l)(j) = A(l)(j) − B(l)(j)L(j).
From (17) and (9) withA(j), B(j), Q(j) and Lk(j)
replaced byA(l)(j), B(l)(j), Q(l)(j) and L(j), respec-
tively, (16) follows immediately.

Since the sequencesA(l)(j), B(l)(j), Q(l)(j),
F

(l)
k (j) are bounded as functions ofl, an easy computa-

tion shows that∥∥∥A′(j)Fk(j)B(j)
(
I + B′(j)Fk(j)B(j)

)−1

×B′(j)Fk(j)A(j)−
(
A(l)(j)

)′
F

(l)
k (j)B(l)(j)

×
(
I +

(
B(l)(j)

)′
F

(l)
k (j)B(l)(j)

)−1

×
(
B(l)(j)

)′
F

(l)
k (j)A(l)(j)

∥∥∥
≤ c1(P,M)

∥∥A(j)−A(l)(j)
∥∥

+c2(P,M)
∥∥B(j)−B(l)(j)

∥∥
+c3(P,M)

∑
i∈S

∥∥Pk(P, i)− P
(l)
k (P, i)

∥∥, (18)

and∥∥∥A′(j)Fk(j)A(j)−
(
A(l)(j)

)′
F

(l)
k (j)A(l)(j)

∥∥∥
≤ c4(P,M)

∥∥A(j)−A(l)(j)
∥∥

+c5(P,M)
∑
i∈S

∥∥Pk(P, i)− P
(l)
k (P, i)

∥∥, (19)

for some non-negative constantsc1(P,M), c2(P,M),
c3(P,M), c4(P,M) and c5(P,M). Taking into ac-
count (18), (19), and subtracting (15) from (5), we get∥∥Pk+1(P, j)− P

(l)
k+1(P, j)

∥∥
≤ c6(P,N)

∑
i∈S

∥∥Pk(P, i)− P
(l)
k (P, i)

∥∥
+f(P,M, l), (20)

where c6(P,M) = c3(P,M) + c5(P,M) and

f(P,N, l)

=
(
c1(P,M) + c4(P,M)

)
max
j∈S

∥∥A(j)−A(l)(j)
∥∥

+ c2(P,M) max
j∈S

∥∥B(j)−B(l)(j)
∥∥

+ max
j∈S

∥∥Q(j)−Q(l)(j)
∥∥.

Note that
lim
l→∞

f(P,M, l) = 0. (21)

Set Y (P, k, l) =
∑

i∈S ‖Pk(P, i) − P
(l)
k (P, i)‖. From

(20) we have

Y (P, k + 1, l) ≤ |S| c6(P,N)Y (P, k, l) + |S| f(P,N, l).
(22)

SinceY (P, 0, l) = 0, (22) shows that

Y (P, k, l) ≤ |S| f(P,M, l)
l−1∑
ν=0

(
|S| c6(P,N)

)ν
,

and
lim
l→∞

Y (P, k, l) = 0, (23)

by (21). Formula (23) makes it obvious that
liml→∞ P

(l)
k (P, j) = Pk(P, j), j ∈ S.

Theorem 3. Let Assumptions (A)–(C) be fulfilled. Then
there existsl0 ∈ N such that for all l ≥ l0 the coupled
Riccati equation

P (l)(j) =
(
A(l)(j)

)′
F (l)(j)A(l)(j)

−
(
A(l)(j)

)′
F (l)(j)B(l)(j)

×
(
I +

(
B(l)(j)

)′
F (l)(j)B(l)(j)

)−1

×
(
B(l)(j)

)′
F (l)(j)A(l)(j) + Q(l)(j), (24)

where
F (l)(j) =

∑
i∈S

p(j, i)P (l)(i), (25)
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has a solutionP (l)(j), j ∈ S, and

lim
l→∞

P (l)(j) = P (j), j ∈ S,

P (j), j ∈ S being the solutions of (7).

Proof. The existence ofl0 is ensured by Assumption (A).
Assume now thatl > l0. An analysis similar to that in the
proof of (16) shows that

sup
l∈N

∥∥P (l)(j)
∥∥ < ∞, j ∈ S.

By Assumption (A) we know that the matricesA(l)(j)−
B(l)(j)L(l)(j), j ∈ S are stable, whereL(l)(j) = (I +
(B(l)(j))′F (l)(j)B(l)(j))−1(B(l)(j))′F (l)(j)A(l)(j)
and F (l)(j) are given by (25). LetP̃ (l)

k (P, j) be
the solution of (9) with A(j), B(j), Q(j) and Lk(j)
replaced byA(l)(j), B(l)(j), Q(l)(j) and L(j), respec-
tively, where L(j) is given by (12). From the minimum
property Assumption (A) we have

P (l)(j) ≤ P
(l)
k (P, j) ≤ P̃

(l)
k (P, j)

and∥∥P
(l)
k (P, j)− P (l)(j)

∥∥ ≤ ∥∥P̃
(l)
k (P, j)− P (l)(j)

∥∥. (26)

Set M
(l)
k (P, j) = P̃

(l)
k (P, j) − P (l)(j). An easy compu-

tation shows that

M
(l)
k+1(P, j) =

(
X̃(l)(j)

)′
F

(l)
k (j)X̃(l)(j), (27)

where X̃(l)(j) = A(l)(j) − B(l)(j)L(l)(j), F
(l)
k (j) =∑

i∈S p(j, i)M (l)
k (P, i). The stability of the matrices

X̃(l)(j) implies that there exist positive constantsã, b̃
such that ∥∥(

X̃(l)(j)
)k∥∥ < ãb̃k, k ∈ N. (28)

Fix ε > 0. By (26)–(28) and the bound on the sequence
M

(l)
k (P, j), l ∈ N, there existsT1(ε) > 0 such that∥∥P

(l)
k (P, j)− P (l)(j)

∥∥ <
ε

3
(29)

for l ∈ N, k > T1(ε). Assumption (B) implies that there
is a T2(ε) > 0 such that∥∥Pk(P, j)− P (j)

∥∥ <
ε

3
(30)

for any k > T2(ε). Let T (ε) = max{T1(ε), T2(ε)}.
According to Theorem 2 there isl0(ε, T (ε)) such that∥∥P

(l)
T (ε)(P, j)− PT (ε)(j)

∥∥ <
ε

3
(31)

for l > l0(ε, T (ε)). Finally,∥∥P (l)(j)− P (j)
∥∥≤∥∥P (l)(j)− P

(l)
T (ε)(P, j)

∥∥
+

∥∥P
(l)
T (ε)(P, j)− PT (ε)(j)

∥∥
+

∥∥PT (ε)(j)− P (j)
∥∥ < ε,

which completes the proof.

Having in mind the equivalence of Cauchy’s and
Heine’s definitions of limits, we can reformulate Theo-
rems 2 and 3 as follows:

Corollary 1. If Assumptions (A)–(C) are satisfied, then for
each ε > 0 there existsδ > 0 such that for all Â(j) ∈
Rn,n, B̂(j) ∈ Rn,m, Q̂(j) ∈ Rn,n, Q̂(j) ≥ 0, ‖A(j) −
Â(j)‖ < δ, ‖B(j)− B̂(j)‖ < δ, ‖Q(j)− Q̂(j)‖ < δ we
have‖P̂k(P, j)−Pk(P, j)‖ < ε and ‖P̂ (j)−P (j)‖ < ε,
where Pk(P, j) and P (j) are solutions of (5) and (11),
respectively, andPk(P, j) and P (j) are solutions of (5)
and (11) withA(j), B(j) and Q(j) replaced byÂ(j),
B̂(j) and Q̂(j), respectively.

3. Conclusions

In this paper the continuity of solutions of algebraic and
difference Riccati equations as functions of coefficients is
verified. Continuity is important in applications to prob-
lems of adaptive control of stochastic systems, see, e.g.,
(Chen, 1985; Czornik, 1996). It may also be useful for
a sensitivity (robustness) analysis of linear systems with
jumps. Since the problem of solutions for coupled Riccati
equations is not trivial, see, e.g., (Chizecket al., 1986),
we hope that the material presented in this paper may play
a role in establishing efficient numerical algorithms.
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