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The problem considered in this paper is the minimization of the lifetime variance of a complex system subject to its expected
life and economic constraints. The example of a bridge network, in which all elements have constant failure rates, illustrates
the problem. A numerical algorithm for solving this optimization problem by using exact formulae for system lifetime
moments is included. Using this algorithm, we can obtain results better than the solutions known from earlier papers.
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1. Introduction

It is well known that redundant elements increase sys-
tem reliability. A non-trivial question arises then: How
to optimally allocate redundant elements? The answer de-
pends on the criterion of optimality and on the structure
of the designed system. Systems most extensively stud-
ied in the literature are those with a series-parallel struc-
ture. For these systems there are algorithms which max-
imize system reliability (Prasad and Raghavachari, 1998;
Prasadet al., 1999), determine the minimal cost (Levitin
et al., 1998), or optimize some objective function (Coit
and Smith, 1996). Procedures for a wide class of systems
which maximize a lower percentile of the system time-
to-failure distribution or maximize the reliability of sys-
tems subjected to imperfect fault-coverage are described
in (Coit and Smith, 1998) and (Amariet al., 1999), re-
spectively. The proposed design algorithms are illustrated
with numerical examples of a rather high complexity.

From a practical point of view, in some situations it
is important to find parameters which ensure a fixed ex-
pected system lifetime. Of course, many such solutions
exist and the ones which minimize the variance of the sys-
tem lifetime may be regarded as optimal. This is because
a smaller variance guarantees that a real system lifetime
is better estimated by the expected lifetime. This is one
of the possible approaches to the reliability optimization
problem and its detailed description is presented in (Kr-
ishnan Iyer and Downs, 1977; 1978).

Although the formulation of the optimization prob-
lem is simple, it is very difficult to find an exact solution.
Even in the case where constant failure rates of all units
are assumed, we encounter a non-linear mixed integer pro-
gramming problem of a high dimension, difficult to solve
explicitly.

The method of solving the optimization problem pre-
sented in (Krishnan Iyer and Downs, 1978) uses formulae
approximating the first and second moments of parallel
systems (the authors determine complex system reliabil-
ity by minimal cutsets). These formulae are heuristic and
they significantly simplify the computations. However,
the region of their validity is limited and it is necessary to
check the domain of optimization every time the formulae
are used.

In this paper the system is characterized by mini-
mal paths, so we can solve the optimization problem by
employing exact formulae for moments of series-parallel
systems. The procedure is applied to the numerical ex-
ample given in (Krishnan Iyer and Downs, 1978) in order
to compare the results. The comparison of the results ob-
tained using both exact and approximate formulae gives
useful information applicable to solving similar problems.
If these results turn out to be comparable, then it is con-
venient to use approximate formulae because algorithms
based on them require fewer computations. On the con-
trary, if an exact method leads to significantly better re-
sults, it can be profitable to perform more complex com-
putations to increase the system’s performance.
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1.1. System Description

All the deliberations in this paper can be applied to any
complex system. For convenience, we concentrate on the
bridge networkU shown in Fig. 1. SystemU consists
of five subsystemsUi (i = 1, . . . , 5), where everyUi is
a subsystem withni units in parallel. The terms ‘paral-
lel’ and ‘series’ are used in their diagram-logic sense. All
units work independently of one another and have con-
stant failure ratesλi, which are common for all units in
one subsystem. Thus the system may be identified by two
vectors: n = (n1, . . . , n5)T and λ = (λ1, . . . , λ5)T.
The unitsU3 and U4 act as alternatives toU1 and U2,
and addingU5 results in increasing system reliability. It
is reasonable to answer the question concerning the num-
bers and characteristics of redundant elements in the re-
spective units.

1U

3U

2U

4U

5U

Fig. 1. Bridge network.

The reliability of complex systems can be described
in terms of ‘minimal success paths’ or ‘minimal cut-
sets’. For the bridge networkU there are four mini-
mal paths: p1 = {U1, U2}, p2 = {U3, U4}, p3 =
{U1, U4, U5}, p4 = {U2, U3, U5}, and four minimal
cutsets: c1 = {U1, U3}, c2 = {U2, U4}, c3 =
{U1, U4, U5}, c4 = {U2, U3, U5}. Using the minimal
paths, we can calculate the reliability of systemU as

RS(t) = R12(t) + R34(t) + R145(t) + R235(t)

−R1234(t)−R1245(t)−R1235(t)

−R1345(t)−R2345(t) + 2R12345(t), (1)

where Rij(t) denotes the reliability of a system built
from Ui and Uj in series. If minimal cutsets are used,
we have

RP (t) = R|13|(t) + R|24|(t) + R|145|(t) + R|235|(t)

−R|1234|(t)−R|1245|(t)−R|1235|(t)

−R|1345|(t)−R|2345|(t) + 2R|12345|(t), (2)

where R|ij|(t) denotes the reliability of a system built
from Ui and Uj in parallel. Of course,RS(t) = RP (t)

for every t ∈ R. For any complex system its reliability
is a linear combination of reliabilities of some parallel (if
cutsets are employed) or series-parallel systems (if paths
are employed).

1.2. System Optimization Problem

Let the random variableT denote the lifetime of sys-
tem U . We wish to obtain the values of system param-
eters which ensure that the mean system lifetime will
be equal to some fixed value and the variance will be
minimal. Of course, according to economic conditions,
in any real system some constraints must be satisfied.
Any unit in subsystemUi determines the cost function
c(λi) = ai/(bi − 1/λi), where ai and bi are fixed cost
parameters and1/λi is the expected lifetime of a single
element. Functionc(λi) has two asymptotes (see Fig. 2):
the vertical and horizontal one, representing technologi-
cal limitations and the minimal cost, respectively. Sys-
tem cost is defined by the sum of all component costs:
csyst =

∑5
i=1 nic (λi). The more elements there are in the

system and the longer their lifetime, the higher the cost of
the system.
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Fig. 2. Cost function.

The optimization problem is formulated as follows:
Find vectorsnopt and λopt which minimize the variance
of the system lifetime, subject to its expected life and eco-
nomic constraints:

(nopt, λopt) = arg minVarT,

ET = E 0,

csyst ≤ c0.

Notice that here minimizing the variance is equivalent to
minimizing the second moment ofT (becauseVarT =
ET 2 − (ET )2 and ET is equal to a fixed valueE 0).
This is a non-linear mixed integer programming problem,
in which additional difficulty is caused by the fact that
discrete variablesni appear as the upper limits of the
sum in the performance indexET 2 and in the constraint
for ET .
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2. Exact Formulae for E T and E T 222

Let the random variableTij denote the lifetime of thej-
th element inUi , and letTi be the lifetime of subsystem
Ui. Obviously, Ti = maxj Tij and the reliability ofUi

is equal to

Ri(t) = 1− Pr{T < t} = 1−
ni∏

j=1

(
1−Rij(t)

)
,

where Rij = exp(−λit). The reliability of the path
{Ul1 , . . . , Ulk} is

Rl1...lk(t) =
k∏

x=1

Rlx(t),

and the reliability of the cutset{Ul1 , . . . , Ulk} is

R|l1,...,lk|(t) = 1−
k∏

x=1

(1−Rlx(t)).

BecauseT is non-negative, we can calculate mo-
ments ofT as

ET =
∫ ∞

0

RS(t) dt =
∫ ∞

0

RP (t) dt,

ET 2 =
∫ ∞

0

2tRS(t) dt =
∫ ∞

0

2tRP (t) dt.

(3)

Using (3), we have formulae for path moments:

E l1...lkT =
nl1∑

il1=1

· · ·
nlk∑

ilk
=1

(−1)il1+···+ilk
+k

×

(nl1
il1

)
· · ·

(nlk
ilk

)
il1λl1 + · · ·+ ilkλlk

,

E l1...lkT 2 =
nl1∑

il1=1

· · ·
nlk∑

ilk
=1

(−1)il1+···+ilk
+k

×
2
(nl1

il1

)
· · ·

(nlk
ilk

)
(il1λl1 + · · ·+ ilkλlk)2

, (4)

and for cutset moments:

E |ij|T =
ni+nj∑
n=1

n∑
a=0

(−1)n+1

(
ni

a

)(
nj

n−a

)
aλi + (n− a)λj

,

E |ij|T
2 =

ni+nj∑
n=1

n∑
a=0

(−1)n+1
2
(
ni

a

)(
nj

n−a

)
(aλi + (n− a)λj)2

,

E |ijk|T =
ni+nj+nk∑

n=1

n∑
a=0

n−a∑
b=0

(−1)n+1

×
(
ni

a

)(
nj

b

)(
nk

n−a−b

)
aλi + bλj + (n− a− b)λk

,

E |ijk|T
2 =

ni+nj+nk∑
n=1

n∑
a=0

n−a∑
b=0

(−1)n+1

×
2
(
ni

a

)(
nj

b

)(
nk

n−a−b

)
(aλi + bλj + (n− a− b)λk)2

, etc.(5)

Formulae (1)–(5) allow us to find the expected lifetime
and the variance of systemU (it is better to determine
moments ofU by minimal paths, because the sums in
(4) have fewer terms than the sums in (5)). Notice that
moments of systemU are functions of vectorsn and λ:
ET = ET (n, λ) and ET 2 = E T 2(n, λ).

Now, from (4) and (5) it follows that for any scalar
α > 0, we have

ET (n, αλ) = α−1 ET (n, λ),

ET 2(n, αλ) = α−2 ET 2(n, λ).
(6)

These expressions are extensively used in the minimiza-
tion algorithm described in the next section. They en-
able us to find momentsET (n, αλ) and ET 2(n, αλ)
for any scalarα by rescaling the previously computed
valuesET (n, λ) and ET 2(n, λ), without using summa-
tion expressions.

3. Algorithm for Numerical Minimization

This section describes a method used in the numerical
minimization of ET 2(n, λ) subject to the constraints
ET (n, λ) = E0 and csyst(n, λ) ≤ c0. To solve this
problem, a modified ‘full search’ method was used. The
optimization procedure consists of two stages. At the first
stage the set of values ofn is determined, for which there
exists anyλ satisfying the cost constraint. At the second
stage, for eachn the set ofλ is determined, which rep-
resents the set of directions in(R+)5. For fixed λ, the
value of ET (n, λ) is calculated. Using (6), a vectorλ′

is determined for whichET (n, λ′) = E0. The values of
λ′ which do not satisfy the cost constraint are discarded.
Next, the minimum value ofET 2(n, λ′) is evaluated for
eachn. A global minimum is obtained by comparing the
minima for all n.

The detailed description of the minimization proce-
dure is as follows:

• The first stage:

1. Find Mi = max{m : cmin(ni,m) ≤ c0} for
i = 1, . . . , 5, where

(ni,m)j =

{
1 for i 6= j,

m for i = j,
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and cmin(n) =
∑5

i=1 ni ai/bi denotes the
minimal cost of subsystemUi. Mi is the
largest admissible number of elements inUi.

2. Set N = {n : 1 ≤ (n)i ≤ Mi, i = 1, . . . , 5}.

• The second stage:

1. Set Λ = {εi +ηi/ki : 0 ≤ ki ≤ k,
∑5

i=1 ki =
k, i = 1, . . . , 5}, where k is fixed and deter-
mines the number of mesh grids.

2. For eachn ∈ N and eachλ ∈ Λ compute
ET (n, λ).

3. Calculateλ′ = λET (n, λ)/E 0. From (6) we
have

ET (n, λ′) =E0,

ET 2(n, λ′) =
(

ET (n, λ)
E 0

)2

ET 2(n, λ).

4. If λ′ does not satisfy the cost constraint (in-
cluding technological limitations), discard it.

5. For a valid λ′ compare the values of
ET 2(n, λ′) and find the minimum.

6. Compare the minima ofET 2 for all n.

4. Numerical Example

The minimization procedure described above was ap-
plied to the bridge network shown in Fig. 1. The as-
sumed numerical values were the same as in (Krishnan
Iyer and Downs, 1978):E 0 = 20, c0 = 24.5, a =
(60, 95, 70, 55, 50), b = (45, 45, 45, 45, 33). The mo-
ments of T were evaluated using the minimal path ap-
proach. The results of the optimization procedure are pre-
sented in Tab. 1. It contains the optimal solution given by
n = (1, 1, 4, 5, 1) (the 7th row) withVarT = 75.97 and
six solutions close to the optimal one.

Table 1. Variance minimization based on exact formulae.

n λ Var T cost

(1, 1, 4, 4, 1) (.0546, .0803, .0824, .0774, .0491) 80.76 24.5

(1, 1, 5, 5, 1) (.1560, .2077, .0831, .0809, 1.979) 80.32 24.5

(2, 1, 4, 4, 1) (.0851, .0554, .0832, .0769, .1247) 79.01 24.5

(2, 1, 3, 5, 1) (.0761, .0680, .0673, .0922, .0735) 78.03 24.5

(1, 1, 3, 6, 1) (.0566, .0822, .0591, .1023, .0738) 77.58 24.5

(1, 1, 5, 4, 1) (.0656, .0812, .0904, .0725, .0962) 77.06 24.5

(1, 1, 4, 5, 1) (.0601, .0809, .0765, .0886, .0749) 75.97 24.5

In (Krishnan Iyer and Downs, 1978) the authors used
the following formulae for the moments of parallel sys-
tems:

ET ≈ 1
ΛH

n∑
i=1

1
i
,

ET 2 ≈ 1
Λ2

H

n∑
i=1

1
i2

+
1
n

( n∑
i=1

1
i

)2 n∑
i=1

1
λ2

i

,

where ΛH stands for the harmonic mean ofλ1, . . . , λn.
In these formulae, if(max λi − minλi) < 0.7ΛH , the
approximation is within 5% of the exact value. Table 2
presents the results obtained in (Krishnan Iyer and Downs,
1978) using approximating formulae (the authors gaveθ
as the arithmetic mean ofλ coordinates instead of theλ
vector).

Table 2. Variance minimization based
on approximated formulae.

n θ Var T cost

(2, 1, 2, 3, 1) 15.55 101.76 21.54

(2, 1, 3, 3, 1) 14.32 92.84 22.89

(2, 1, 3, 4, 1) 13.47 84.00 24.28

5. Final Remarks

As one can expect, the method of solving the optimiza-
tion problem presented in this paper gives better results
than the one based on approximated formulae for mo-
ments (Krishnan Iyer and Downs, 1978). It is, however,
worth stressing that in the numerical example studied we
obtained variance which was about 10% less than the one
obtained in (Krishnan Iyer and Downs, 1978). The solu-
tion with n = (2, 1, 3, 4, 1), which is the best in the ap-
proximated method (Krishnan Iyer and Downs, 1978), is
the 13th in succession when compared with the solutions
obtained from the procedure described in Section 3.

Our results contribute also to solving the hypothesis
formulated in (Krishnan Iyer and Downs, 1978), i.e. that
each time redundancy is added to the system in such a way
that the mean lifetime remains unchanged and the total
cost does not exceed a fixed value, the standard deviation
is reduced. This hypothesis followed from the analysis of
numerical results. However, numerical results presented
in this paper indicate that the hypothesis is not true. To
see this, compare the 2nd and 6th (or 7th) rows in Tab. 1.
The system in the 2nd row has a redundant element in unit
U4 (or U5) and its variance is higher than the variance of
the system in the 6th (or 7th) row.

A comparison of exact and approximate approaches
to series-parallel systems was given in (Łobos, 2000). The
method based on exact formulae for moments gives better
results in both cases (elements have constant or random
failure rates).
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