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Phenotypic evolution of two-element populations with proportional selection and normally distributed mutation is consid-
ered. Trajectories of the expected location of the population in the space of population states are investigated. The expected
location of the population generates a discrete dynamical system. The study of its fixed points, their stability and time to
convergence is presented. Fixed points are located in the vicinity of optima and saddles. For large values of the standard
deviation of mutation, fixed points become unstable and periodical orbits arise. In this case, fixed points are also moved
away from optima. The time to convergence to fixed points depends not only on the mutation rate, but also on the distance
of the points from unstability. Results show that a population spends most time wandering slowly towards the optimum with
mutation as the main evolution factor.
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1. Introduction

Although easily implemented, evolutionary methods are
difficult to analyze theoretically. Usually, a population is
considered as a set of individuals evolving in a landscape
of a fitness function. However, populations (species),
and not individuals, are the main subject of natural evo-
lution. Therefore, it is reasonable to regard the popula-
tion as a whole. It appears that the idea of considering
the population as a point evolving in the space of popu-
lation states enables the analysis of evolutionary methods
and can be fruitful (Vose and Wright, 1994; Galar and
Karcz-Dulęba, 1994; Prugel-Bennet, 1997; Vose, 1999).
In this paradigm, evolution may be determined by trajec-
tories of an expected population in the space of states.
In the general case, the analysis of population dynam-
ics is far from trivial and often some simplifications are
required. For example, Vose and Prugel-Bennet exam-
ined infinite populations. The opposite place is occupied
by very small populations. Our study of a very simple
case of phenotypic evolution where a two-element popu-
lation evolves in one-dimensional search spaces provided
very interesting results (Galar and Karcz-Dulęba 1994;
Chorążyczewskiet al., 2000; Karcz-Dulęba, 2000; 2002;
2004). The expected values of population states gener-
ate a discrete dynamical system. For the system its fixed
points, their stability and basins of attractions were deter-
mined for attributive classes of fitness functions (symmet-

rical, asymmetrical, unimodal, multimodal). The number,
location and fixed points’ stability depend on the param-
eters of fitness, and mainly on the evolution parameter —
the standard deviation of mutationσ. In this paper, the
time to the convergence of the system to fixed points is
analyzed. Simulations and analytical considerations will
shed light on global and local aspects of the convergence
to fixed points. The time to convergence depends on the
initial population state. Generally, a low number of gener-
ations to convergence characterizes populations initialized
at states with a high population quality. A largerσ usu-
ally brings about faster convergence, but locations of fixed
points move away from optima. Moreover, when the sta-
bility of a fixed point is changed, the time to convergence
is slowed down.

This paper is organized as follows: In Section 2,
models of phenotypic evolution in the space of types and
in the space of population states are given. This section
provides also the description of two-individual popula-
tions in the space of states. The analysis of the popula-
tion distribution is presented in Section 3. In Section 4,
a discrete dynamical system defined by expected states of
the population in consecutive iterations is introduced. Its
fixed points and their stabilities are presented. Simulation
and analytical results of the number of generations to con-
vergence are included in Section 5. Section 6 concludes
the paper.
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2. Model of Phenotypic Evolution in the
Space of Population States

In this paper, a simple model of Darwinian evolution
(Galar, 1985) is considered. The evolution is pheno-
typic, asexual and the traits are coded as real numbers.
In each generation, a population is composed ofm in-
dividuals P = {xxx1,xxx2, . . . ,xxxm}. Individuals are de-
scribed by then-element vector of traits (type)xxxj =
{xj,1, xj,2, . . . , xj,n}, j = 1, 2, . . . ,m. To each indi-
vidual its non-negative performance index (fitness)q(xxx)
is assigned. Offspring are reproduced asexually in non-
overlapping generations. The reproduction rate depends
on the individuals’ fitness. In a new generation, for each
individual a parent is selected according to the propor-
tional selection rule. An offspring inherits its parents’
type xxx, modified with the normal distributionN(xxx, σ),
where σ denotes the standard deviation of mutation. In
the (i + 1)-th generation, the distribution of the new indi-
vidual’s position inRn depends on the positions of indi-
viduals in the current (i-th) generation and is given by

f i+1
xxx (xxx|P (i)) =

m∑
k=1

α(xxxi
k)g(xxx,xxxi

k)

=
m∑

k=1

q(xxxi
k)

m∑
j=1

q(xxxi
j)

g(xxx,xxxi
k), (1)

whereP (i) is the population in thei-th generation,xxxi
k ∈

Rn stands for the type of thek-th individual in the i-th
generation,α(xxxi

k) means the probability of selecting the
individual xxxi

k, q(xxxi
k) is the fitness of the individualxxxi

k,
and g(xxx,xxxi

k) signifies the distribution of mutation of the
k-th individual.

The above formulation considers a population in the
space of typesRn where to each individual a point
of the space is assigned. An alternative method is to
represent the population as a single point in an appro-
priately definedspace of population statesS (Galar
and Karcz-Dulęba, 1994; Chorążyczewskiet al., 2000;
Karcz-Dulęba, 2000; 2002; 2004). In general, the
structure of S is complicated. The dimensionality
of the space of population states ism times larger
than the dimension of the space of types and equal to
dim(S) = mn. Thus a state of the population in
the i-th generation is described by the vectorsssi =
(xi

1,1, x
i
1,2, . . . , x

i
1,n, xi

2,1, x
i
2,2, . . . , x

i
m,1, . . . , x

i
m,n).

The space of population states cannot be identified
with Rmn because the population dynamics do not de-
pend on the ordering of individuals in the population.
Therefore, an equivalence relationU must be defined on
S in order to identify all points corresponding to permu-
tations of individuals within the population. The space

S with U defined becomes the factor (quotient) space
SU = Rmn/U .

Further on, two-element populations (m = 2) evolv-
ing in a one-dimensional search space (n = 1) (i.e. (2, 2)-
EA) will be analyzed. This simplified case of evolution
allows us to keep trace of key mechanisms governing the
process. Also, when the whole population is represented
as a pointX = {x1, x2}, it can be visualized easily. In
order to define the space of population statesSU , the fol-
lowing equivalence relation is introduced:

R2 → SU ⊂ R2 :

(xi
1, x

i
2) →

{
(xi

1, x
i
2) for xi

1 ≥ xi
2,

(xi
2, x

i
1) for xi

1 < xi
2.

(2)

The mapping identifies the factor spaceSU with the right
half-plane bounded by the lineX1 = X2, called theiden-
tity axis(Fig. 1(a)).

In the space of population states the fitness must rep-
resent the quality of the entire population, rather than each
individual alone. Thus, the fitness function is defined as
the average fitness of all individuals from the population
(q = (q(x1) + q(x2))/2). In this paper, a bell-shaped
Gaussian function with a slopea,

q(x) = exp(−ax2), (3)

will serve as an example of the unimodal fitness function.
Bimodal fitness functions are represented by the sum of
two Gaussian functions with the same slopea and differ-
ent heights,

q(x) = exp(−ax2) + h exp(−a(x− 1)2). (4)

The analysis of evolution in the spaceSU becomes
more convenient after the rotation of theX1X2 coordi-
nate frame with the angleφ = π/4. The new coordi-
nate frame, calledWZ, is defined by the transformations
wi = (xi

1−xi
2)/
√

2 and zi = (xi
1 + xi

2)/
√

2. The factor
spaceSU is transformed to the right half-plane(w ≥ 0)
bounded by theZ-axis (Fig. 1(b)). The population state
sssi = (xi

1, x
i
2) is mapped into the statesssi = (wi, zi). The

new coordinatew describes the distance of the popula-
tion state from the identity axis and it may be considered
as a measure of the population’s diversity. The coordinate
z locates a state along the identity axis.

A few paths of evolution in the space of population
states for the unimodal fitness function (3) are depicted in
Fig. 1 (in this and further figures, dotted lines correspond
to contour lines of the surface of the populations’ average
fitnessq). Figure 1(a) shows the evolution in the coordi-
nate framesX1X2 and Fig. 1(b) illustrates the evolution
in the rotated framesWZ. A population very quickly oc-
cupies states near the identity axis, and this indicates its
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Fig. 1. Evolution of a two-element population in the landscape
of the Gaussian unimodal fitness function (3) (a =
5). 50 generations are presented for every initial state
(marked by an open circle) andσ = 0.1: (a) the coordi-
nate framesX1X2, (b) the coordinate framesWZ.

unification. Mainly, the selection mechanism is responsi-
ble for the unification of the population. Then the almost
homogeneous population slowly approaches the optimum
of the fitness function. In the vicinity of the optimum,
the population may stay for many iterations, wandering
around with steps depending on the standard deviation of
mutationσ. This phase of evolution can be called the
quasi-equilibrium. Two stages of the process are clearly
visible in both the pictures.

3. Analysis of Population Distribution

Distributions (1) are the same for each individual and in-
dependent of one another. Thus, the joint distribution
of the whole population is the product ofm distribu-

tions (1). Since the population state is described in the
quotient space, the distribution of the population state in
SU is given by

f̃ i+1
SU

(sss|sssi) = m!
m∏

j=1

f i+1
x (xxxj |sssi)

= m!
m∏

j=1

m∑
k=1

α(xxxi
k)g(xxxj ,xxx

i
k). (5)

Considering a two-element population, the distribution (5)
takes the form

f̃ i+1
SU

(x1, x2|sssi) = 2f i+1
x (x1|sssi)f i+1

x (x2|sssi). (6)

Using the distribution function (6) transformed to new co-
ordinatesw and z, the expected values of the population
statesssi = (wi, zi) in the next generation can be calcu-
lated analytically, see Appendix. The expected values of
coordinatesw and z, Ei+1[w|sssi] and Ei+1[z|sssi], in the
(i + 1)-th generation are respectively equal to

Ei+1

[
w|sssi

]
=

√
2
π

σ +
(
1−Ψi2

)
σ

(
φ0

(
wi

σ

)
+

wi

σ
Φ0

(
wi

σ

))
, (7)

Ei+1

[
z|sssi

]
= zi + Ψiwi, (8)

where

Ψ(w, z) =
q
(
(w + z)/

√
2
)
− q

(
(z − w)/

√
2
)

q
(
(w + z)/

√
2
)

+ q((z − w)/
√

2)
,

Ψi = Ψ(wi, zi),

φ0(ξ) =
1√
2π

(
exp

(
−ξ2

2

)
− 1

)
,

Φ0(ξ) =
1√
2π

∫ ξ

0

exp
(
− t2

2

)
dt.

The expected value (7) is composed of two parts: one
depends only on the standard deviation of mutationσ
while the other depends also on the current value ofw
and on the fitness function (influencing the coefficientΨ).
The value of (7) can be lower bounded:Ei+1[w|sssi] ≥√

2/πσ, sinceq(x) is non-negative,φ0(x) + xΦ0(x) ≥
0, Ψ ∈ [−1, 1]. While the differences in the fitness val-
ues of individuals are significant,(1−Ψ2) → 0, we have
Ei+1[w|sssi] →

√
2/πσ. When the value of thew coordi-

nate is small, the second component of (7) influences the
expected value substantially. The expected value of thez
coordinate (8) depends on the current state of the popu-
lation and on the sign and the value of the coefficientΨ
(the fitness of individuals).
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The trajectories of the expected values of the popu-
lation states in the landscape of the unimodal fitness func-
tion are presented in Fig. 2. The trajectories reveal a qual-
itatively similar behaviour to the trajectories of evolution
(cf. Fig. 1). Populations initialized at states far from the
identity axis very quickly approach the vicinity of the axis,
at a distance of about

√
2/πσ. Then, the process of ap-

proaching the optimum slows down until it holds up at the
equilibrium state. The behaviour of the trajectories could
be explained intuitively looking at a population initially
consisting of individuals of quite different fitness values.
It is very likely that a more fitted individual will be cho-
sen as a parent of both the members of the new population.
In this case, the expected distance between offspring de-
pends on the mutation only and it is determined byσ. In
a population consisting of individuals of almost equal fit-
ness values, changes in the states will be minor and the
movement of the population slows down.
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w=σ

Fig. 2. Trajectories of the expected values of the
population states for the unimodal fitness
function (3) (σ=0.1, a=5). Asterisks indi-
cate states in consecutive generations.

4. Discrete Dynamical System

It is reasonable (as a first approximation of the population
behaviour) to assume that the expected value of the popu-
lation state is just a real point where the population in the
next iteration appears. Taking advantage of this interpreta-
tion, the expected values of the population state (7) and (8)
generate the discrete dynamical system in the spaceSU

described by the following equations:wi+1 = Ei+1

[
w|sssi

]
,

zi+1 = Ei+1

[
z|sssi

]
.

(9)

Equation (9) defines two scalar mappings

(w, z) → F (w, z) =

F1(w, z),

F2(w, z).
(10)

In the sequel, the analysis of the asymptotic behaviour of
the dynamical system (9) is presented.

4.1. Fixed Points of the System

The coordinates of the fixed points of the dynamical sys-
tem (9) are obtained from the well-known equationsw =
F1(w, z) and z = F2(w, z). The equilibrium states
ω = (ws, zs) are characterized by the conditions

ws ' 0.97σ, (11)

Ψ(ws, zs) = 0. (12)

The w-coordinate of fixed points (11) depends only on
the standard deviation of mutationσ. Sincew indicates
the diversity of the population, in the equilibrium state the
types of individuals differ aboutσ. Thus the population
is not represented by a single optimal type, as might be
expected in the equilibrium state. Thez-coordinate of
fixed points depends on a fitness function and it satisfies
the equality

q
(
(zs + ws)/

√
2
)

= q
(
(zs − ws)/

√
2
)

. (13)

Solutions of (13) are obtained as the points of intersec-
tion of two fitness functionsq1 = q((zs + ws)/

√
2) and

q2 = q((zs − ws)/
√

2). The number of the intersection
points depends on the number of the optima of the fitness
function and on the standard deviation of mutation. When
the value ofσ increases, the number of fixed points may
decrease as functionsq1 and q2 are spread apart.

Due to difficulties in obtaining closed-form formulae
for the positions of fixed points and other interesting nu-
merical characteristics of evolution for any quality func-
tion, one must draw conclusions mainly relying on simu-
lations. A comprehensive description of our previous con-
clusions (Karcz-Dulęba, 2000; 2002) is presented below.

For unimodal fitness functions, the dynamical sys-
tem (9) has at most one fixed point. When fitness func-
tions are symmetrical, with the optimum placed at zero,
the fixed pointω = (0.97σ, 0) is not placed at the op-
timum. The smallerσ, the more precise localization
of the optimum by the fixed point, but the process of
the optimum localization is lengthened. The asymmetry
in unimodal fitness functions influences the value of the
z-coordinate of the fixed point leaving itsw-coordinate
unchanged. In the case of bimodal fitness functions,
the dynamical system (9) has one or three fixed points
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Fig. 3. Location of fixed points as the function ofws (σ), ob-
tained as solutions to (13). Bimodal fitness functions (4)
(a = 5): (a) asymmetrical (h = 2); (b) symmetrical,
with the symmetry axis located at zero (h = 1).

(Fig. 3(a)), depending on the value of the standard devia-
tion of mutation. For small values ofσ, two fixed points
are located near optima and one near a saddle. When
the standard deviation of mutation is increased, two fixed
points disappear and only one fixed point, placed near the
global optimum, remains. The symmetry in the fitness
function causes symmetry in the localization of the fixed
points of two optima and the placement of the third point
on the symmetry axis (Fig. 3(b)).

In general, for a fitness function withk optima, the
number of fixed points can vary from 1 to2k + 1. They
are situated near the optima and saddles of a fitness func-
tion. For symmetrical fitness functions, one of the points
is always located on the symmetry axis while the others
are symmetrically paired.

4.2. Stability of Fixed Points

To characterize the behaviour of the population in the
vicinity of the equilibrium states of the dynamical system,
the matrix of its linear approximation must be calculated
(Karcz-Dulęba, 2002; 2004): ∂F1(w, z)

∂w

∂F1(w, z)
∂z

∂F2(w, z)
∂w

∂F2(w, z)
∂z


w=ws, z=zs

=

 Φ0(w) 0

w
∂Ψ(w, z)

∂w
w

∂Ψ(w, z)
∂z

+ 1


w=ws, z=zs

. (14)

The linear approximation matrix for the dynamical sys-
tem (9) is diagonal and its eigenvalues are equal to

λ1 = Φ0(ws), λ2 = ws∂Ψ(w, z)/∂z + 1. (15)

Since |λ1| < 1, the fixed point stability depends on the
second eigenvalue only and, consequently, on fitness. The
fixed point ω = (ws, zs) is stable if the inequality

−2 ≤ ws ∂Ψ(w, z)
∂z

≤ 0 (16)

is satisfied at this point. The fixed point stability depends
both on the parameter of the evolutionary process (the
standard deviation of mutation) and on the parameters of
fitness. It can be proved that saddle fixed points are unsta-
ble. Because a fitness function impacts stability, its analy-
sis is provided for specific types of fitness (Fig. 4).

For the unique fixed pointω = (0.97σ, 0) of
the symmetric unimodal Gaussian fitness (3), the condi-
tion (16) takes the form−2 < −aws2 < 0. The right-
hand side of the inequality always holds. Assuming that
the parametera is given, the fixed point is stable for
small values of the standard deviation of mutationσ. For
the value σc '

√
2/a, the fixed point loses its stabil-

ity and a period-doubling (pitchfork) bifurcation appears.
For increasedσ, stable orbits of period2 were observed
(Fig. 3(a)). For the bimodal fitness (4), fixed points close
to optima are stable whenσ is relatively small. The fixed
point near the global optimum which remains for largeσ
becomes unstable whenσ attains values larger than the
distance between the optima. In those circumstances, the
fixed point gives rise to a stable orbit of period2. Simula-
tions performed for even larger values of the standard de-
viation of mutationσ do not exhibit any other periodic or-
bits. However, differences in fitness values for largeσ are
so insignificant that round-off errors could be of concern.
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Fig. 4. Trajectories of the dynamical system (9) for different
values ofσ. Stable fixed points and periodical orbits are
observed. The initial states are denoted by open circles
and the fixed points by asterisks: (a) unimodal fitness
function (3) (a = 5), σ ∈ [0.1, 1.2]; (b) bimodal fitness
function (4) (a = 5, h = 2) σ ∈ [0.1, 1.4], the step for
σ equal to0.1.

5. Time to Convergence

The number of generations needed to reach the optimum
is an important feature of optimization methods. The time
to the convergence to a fixed point can be also analyzed in
the case of the dynamical system (9). We start with simu-
lation results. In Fig. 5, the numbers of generations to con-
vergence to fixed points for unimodal and bimodal fitness
functions are presented. The diagram shows the number
of generation needed to stabilize (i.e., the absolute differ-
ence between coordinatesw and z of two consecutive
points drops below the prescribed value ofε = 10−8) for
initial states located on a grid covering the visualized area.
The value ofε was determined empirically to preserve a
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Fig. 5. Number of generations to convergence forσ = 0.1.
Fixed points are marked by asterisks. Dotted lines sepa-
rate the basins of attractions of both optima. Initial states
are located on the gridw ∈ [0, 1.5], z ∈ [−1, 1] and
z ∈ [−1.5, 1.5], respectively, for (a) and (b) with step
0.25: (a) unimodal fitness (3) (a = 5); (b) bimodal fit-
ness (4) (a = 5, h = 2).

satisfactory accuracy of finding the fixed point with a rea-
sonable amount of computations. Increasing precision (by
taking smaller values ofε) does not influence the shape
of the diagram but increases the number of generations
needed to find the fixed point. For unimodal fitness, the
smallest numbers of generations to reach the stable state
are observed for populations initially located on and along
the w axis. A few more generations were needed for ini-
tial states with one almost optimal individual in the pop-
ulation (two ridges in the average surface of the fitness).
The largest number of iterations to stabilize the popula-
tion was required for populations initialized at states with
small values of the average fitness. It appears (Fig. 5(b))
that for the bimodal fitness function, initial states from
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which evolution is relatively fast coincide with the basin
of attraction of the global optimum (Karcz-Dulęba, 2004).

The earlier analysis of the dynamical system (9) re-
vealed that the evolution distinguished states located on
the line parallel to theZ axis and placed at a distance of
w =

√
2/πσ from the axis. Therefore, it is interesting to

answer the question how many generations are required to
bring the population to the vicinity of the line for various
quality functions. (For simplicity, it was checked how fast
the coordinatew drops below the value ofσ. Further on,
the line w = σ is referred to as theσ-line.) In Fig. 6
attraction abilities of theσ-line are demonstrated for uni-
and bimodal fitness functions. The number of generations
needed to get to theσ-line is much smaller than the num-
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Fig. 6. Number of generations to reach theσ-line for σ = 0.1.
Fixed points are marked by asterisks and theσ-line is
depicted by the dotted line. As for the initial states, cf.
Fig. 5. Results: (a) unimodal fitness function (3), (a =
5); (b) bimodal fitness function (4), (a = 5, h = 2).

ber needed to reach fixed points. On the average, only
a few generations are necessary to move the population
to the neighbourhood of theσ-line for the tested fitness
functions. This effect does not depend on the value ofσ
and it corresponds to jumps of trajectories, observed in the
simulation of evolution and in the dynamical system anal-
ysis (see Figs. 1 and 2). For most of the time (measured
in generations), the population wanders in the vicinity of
the σ-line, where the differences in the types of individ-
uals are aboutσ. SinceΨ ∈ [−1, 1], in one iteration the
population cannot move along thez-axis by more thanσ,
cf. (8) and (9).

The average time to the convergence to the fixed
point decreases considerably whenσ increases, for both
uni- and bimodal fitness functions (Fig. 7). For largeσ,
the population needs fewer than a hundred generations to
reach a stable state. However, it is not good advice to set
the parameterσ to a large value. Although the time of
evolution is short, the distance of the fixed point to the op-
timum is significant. The sharp peak in Fig. 7(b) occurs
near the bifurcation point and it is a consequence of sta-
bility changes (convergence to the orbit, rather than to the
fixed points). The increase in the number of generations
to converge near the bifurcation point is also observed for
the unimodal function, but the increment is not socrucial.

Till now, the (global) time to the convergence to the
global optimum or to the attractionσ-line have been ana-
lyzed. There also exists a local view on convergence time
to fixed points. The analysis of the absolute values of the
eigenvalues given by (15) allows us to trace the time in a
close neighbourhood of fixed points. Obviously, assum-
ing the stability of a fixed point, time to convergence is
determined by the eigenvalue which attains a larger abso-
lute value than the other eigenvalue. Let us have a closer
look at the case of population evolution in a close vicinity
of the fixed point with the unimodal Gaussian fitness (3).
For very small values ofσ, |λ1| ' 0 while |λ2| → 1
and convergence to the stable point is very slow. When
σ increases, so does|λ1|, while |λ2| decreases. Two in-
teresting values ofσ can be distinguished, namely, those
characterized by the condition

|λ1(σ)| = |λ2(σ)|, (17)

when the time to convergence to the fixed point is not
slowed down by any eigenvalue. In Fig. 8, the absolute
values of the eigenvalues for the unimodal fitness func-
tion (3) are presented. Comparing the shapes of Fig. 8
and Fig. 7(a) (σ ∈ [0.2, 0.6]) one can notice that the local
view on convergence corresponds to the global view. It
allows us to claim (at least for the case of the fitness con-
sidered) that the motion along theσ-line reveals the same
dynamics as the behaviour around the fixed point.
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Fig. 7. Average time to reach the fixed point or orbit, as a
function of σ. The number of generations is averaged
from 90 trajectories started from states located on the
grid (see Fig. 5). Results: (a) unimodal fitness func-
tion (3), (a = 5); (b) bimodal fitness function (4),
(a = 5, h = 2).

6. Conclusions

In this paper phenotypic evolution of two-element pop-
ulations evolving in a one-dimensional search space was
considered. The discrete dynamical system derived from
the evolution of the expected location of the population
in the space of population states was analyzed. The time
to the convergence to fixed points of the system was of
particular interest. The evolution process appeared to be
a two-speed process. Its first phase, a fast approach to
states located at a distance of aboutσ from the Z-axis
is followed by slow convergence to the fixed point after-
wards. The jump to theσ-line indicates the unification
of the population. When the population becomes almost
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Fig. 8. Absolute values of the eigenvalues of the dynamical sys-
tem (9) for the unimodal fitness (3) witha = 5.

homogeneous, individuals differ by aboutσ. With such
small differences in the types of individuals, the selection
pressure is low and the population movement slows down.
Simulations and the analysis of the eigenvalues of the dy-
namical system allow us to formulate some hints about
how to set the mutation parameterσ. Too small values
substantially slow down the convergence but the optimum
is reached more precisely than in the case of large values
of σ. In the latter case, to some extent, the number of gen-
erations to convergence is small but fixed points are placed
at some distance from optima. Moreover, whenσ is large
enough, fixed points lose their stability and once again the
time to convergence is low. For researchers implement-
ing evolutionary search methods, it is advised to vary the
mutation rate depending on the phase of the optimization
process.
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Appendix

The distribution of the population state in the quotient
spaceSU (5) for two-element populations is given by

f̃ i+1
SU

(x1, x2|sssi) = 2f i+1
X (x1|sssi)f i+1

X (x2|sssi) (18)

= 2
[
α(xi

1)g(x1, x
i
1) + α(xi

2)g(x1, x
i
2)

]
×

[
α(xi

1)g(x2, x
i
1) + α(xi

2)g(x2, x
i
2)

]
,

where

α(xi
k) =

q(xi
k)

q(xi
1) + q(xi

2)

and

g(xj , x
i
k) = N(xi

k, σ)

=
1√
2πσ

exp
(
− (xj − xi

k)2

2σ2

)
, k = 1, 2.

The coordinate frameX1X2 is rotated by the angleφ =
π/4 and transformed to new coordinatesWZ, where
w = (x1−x2)/

√
2 and z = (x1 +x2)/

√
2. After the ro-

tation, the factor spaceSU , originally identified with the
right half-plane bounded by the lineX1 = X2, becomes
the right half-planew ≥ 0 bounded by theZ axis.

The expected values of statesssi+1 in coordinates
WZ are calculated as

Ei+1

[
w|sssi

]
=

∫ ∞

0

∫ ∞

−∞
wf̃ i+1

SU
(w, z|sssi) dz dw,

Ei+1

[
z|sssi

]
=

∫ ∞

0

∫ ∞

−∞
zf̃ i+1

SU
(w, z|sssi) dz dw, (19)

using the distribution (18) transformed into the new co-
ordinates. After integration, the expected values take the
forms (7) and (8).


