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In this paper an infinite horizon predictive control algorithm, for which closed loop stability is guaranteed, is developed
in the framework of multivariable linear input-output models. The original infinite dimensional optimisation problem is
transformed into a finite dimensional one with a penalty term. In the unconstrained case the stabilising control law, using
a numerically reliable SVD decomposition, is derived as an analytical formula, calculated off-line. Considering constraints
needs solving on-line a quadratic programming problem. Additionally, it is shown how free and forced responses can be
calculated without the necessity of solving a matrix Diophantine equation.
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1. Introduction

Model predictive control refers to a control strategy in
which a model of the process is used to predict its future
behaviour. At each time instant an open-loop optimal con-
trol problem, with the current state of the plant as the ini-
tial state, is solved. Only the first calculated control move
is then applied to the plant, the measurements are updated
and the whole procedure is repeated (Camacho and Bor-
dons, 1999; Maciejowski, 2002; Tatjewski, 2002). Such
a method makes it possible to control effectively multi-
variable plants, both linear and nonlinear (Henson, 1998;
Morari and Lee, 1999). It is recognised as the only ad-
vanced control technique which has made a substantial
impact on industrial control problems, largely due to its
unique ability to handle hard constraints (Mayne, 2001).

Despite significant advances in nonlinear predictive
control (Henson, 1998), algorithms based on linear mod-
els, mainly DMC (Dynamic Matrix Control) (Cutler and
Ramaker, 1980) and GPC (Generalized Predictive Con-
trol) (Clarke et al., 1987a; 1987b), are usually applied
to on-line control. In many cases linear models are pre-
cise enough, and their identification and validation is sig-
nificantly simpler than in the case of the nonlinear ones.
First and foremost, linear models imply computational
simplicity. In the unconstrained case the analytical con-
trol law can be calculated beforehand. Imposing con-
straints results in a convex quadratic programming prob-
lem, for which fast and reliable methods are available
(Maciejowski, 2002). Both aforementioned algorithms

(i.e. DMC and GPC) use input-output models, which are
more intuitive and popular than the state-space represen-
tation, especially among practitioners.

In the 1980’s, when the linear predictive control algo-
rithm gained widespread acceptance in industry (Morari
and Lee, 1999), stability was achieved by tuning hori-
zons’ lengths and penalty factors. This approach was
criticised as “playing games” (Bitmeadet al., 1990).
In the meantime, however, some stability criteria were
obtained. As far as the unconstrained cases are con-
cerned, they were published in (Clarke and Mohtadi,
1989; Clarkeet al., 1987a; 1987b; Kwon and Byun, 1989;
Rouhani and Mehra, 1982; Scattolini and Bittanti, 1990),
while constrained cases were discussed by (Rouhani and
Mehra, 1982; Gutman and Hagander, 1985; Sznaider and
Damborg, 1990; Zafiriou and Marchal, 1991; Zafiriou,
1990). Unfortunately, their applicability was limited.

Two stabilising modifications to the standard fi-
nite horizon problem formulation deserve serious con-
sideration: a terminal constraint and an infinite hori-
zon (e.g. Mayneet al., 2000; Maciejowski, 2002). The
first approach, developed in the GPC framework, re-
sulted in the Constrained Receding-Horizon Predictive
Control (CRHPC) algorithm (Clarke and Scattolini, 1991;
Scokaert and Clarke, 1994) and the Stable Input-Output
Receding Horizon Control (SIORHC) algorithm (Chisci
and Mosca, 1994). However, imposing additional equal-
ity constraints to force the predicted output signal to take
exactly a desired set-point value at the end of the pre-
diction horizon, especially when the horizon is short, is
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likely to result in a rather aggressive control action. More-
over, undesirable side-effects on the performance and a
possible risk of infeasibility are also reported (Scokaert,
1997). The appealing infinite horizon approach was in-
vestigated in (Muske and Rawlings, 1993; Rawlings and
Muske, 1993), who showed how to reformulate the infinite
dimensional optimisation problem as a finite dimensional
one in the context of linear state-space models. Stabil-
ising properties were also established in the constrained
case (Scokaert and Clarke, 1994). More recently, the same
idea was incorporated in the framework of the GPC algo-
rithm and was called GPC∞ (Scokaert, 1997). Yet an-
other interesting algorithm is the Linear Quadratic Gaus-
sian Predictive Control (LQGPC), in which the optimal
predictive law is derived using an LQG approach and the
infinite horizon is also possible (Ordyset al., 2000).

The purpose of this paper is to develop an in-
finite horizon algorithm based on multivariable input-
output models for stable plants, taking advantage of the
work done in (Muske and Rawlings, 1993; Rawlings and
Muske, 1993). In the unconstrained case, the control
law is derived as an analytical formula, calculated off-line
by means of a computationally reliable SVD decomposi-
tion. In the constrained case, a quadratic programming ap-
proach is used on-line. Additionally, it is shown how free
and forced responses can be calculated without solving a
matrix Diophantine equation, which is usually employed
in the context of GPC algorithms.

The outline of the paper is as follows. In Section 2
the derivation of the algorithm is presented. The infinite
horizon performance index is reformulated in terms of a
finite number of parameters, two possible approaches to
solving the unconstrained optimisation problem are dis-
cussed and a closed-form control law is derived. The
constrained optimisation problem is then formulated as-
suming input constraints. Simple methods which make
it possible to calculate forced and free responses without
solving a matrix Diophantine equation are also described.
Simulation results of a chemical reactor are presented in
Section 3. In particular, the algorithm is compared with
the CRHPC approach. The paper is summarised in Sec-
tion 4.

2. Infinite Horizon Predictive Control
Algorithm

2.1. Process Model

The stable process under consideration hasN input and
M output variables and is described by the following
discrete-time equation:

A(z−1)y(k) = B(z−1)u(k), (1)

where

u(k) =


u1(k)

...

uN (k)

 , y(k) =


y1(k)

...

yM (k)

 (2)

and

A(z−1)=



1 + a1
1z
−1 + . . .

+a1
naz−na . . . 0

...
...

...

0 . . . 1 + aM
1 z−1 + . . .

+aM
naz−na


,

B(z−1)=



b1,1
1 z−1 + . . . b1,N

1 z−1 + . . .

+b1,1
nb z−nb . . . +b1,N

nb z−nb

...
...

...

bM,1
1 z−1 + . . . bM,N

1 z−1 + . . .

+bM,1
nb z−nb . . . +bM,N

nb z−nb


.

(3)

In this paper a state-space representation of the
model (1) is also used:

x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k).

(4)

Although several equivalent state-space formulations can
be obtained (Kailath, 1980), a straightforward method is
to define the state vector of lengthN(nb−1)+Mna, the
elements of which are past input and output values (e.g.
Maciejowski, 2002):

x(k) =

[
xu(k)
xy(k)

]
, (5)

where

xu(k) =



u1(k − nb + 1)
...

uN (k − nb + 1)
...

u1(k − 1)
...

uN (k − 1)


,
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xy(k) =



y1(k − na + 1)
...

yM (k − na + 1)
...

y1(k)
...

yM (k)


. (6)

The matricesA, B, C are of dimensions(N(nb− 1) +
Mna)× (N(nb−1)+Mna), (N(nb−1)+Mna)×N ,
M × (N(nb− 1) + Mna), respectively,

A =


A1,1 0N(nb−1)×Mna

0M(na−1)×N(nb−1)

bnb . . . b2

A2,2

 ,

(7)
where

A1,1 =

[
0N(nb−2)×N IN(nb−2)×N(nb−2)

0N×N 0N×N(nb−2)

]
,

A2,2 =

[
0M(na−1)×M IM(na−1)×M(na−1)

0M×M −ana . . . −a1

]
,

B =


0N(nb−2)×N

IN×N

0M(na−1)×N

b1

 ,

C =
[

0M×(N(nb−1)+M(na−1)) IM×M

]
,

(8)

and the submatricesai andbi are of characteristic struc-
tures

ai =


a1

i . . . 0
...

...
...

0 . . . aM
i

 ,

bi =


b1,1
i · · · b1,N

i
...

...
...

bM,1
i · · · bM,N

i

 .

(9)

2.2. Performance Index Reformulation

The performance index, whose minimisation yields an op-
timal input profile, is defined over the infinite horizon as

follows:

J(k) =
∞∑

p=1

[
M∑

m=1

µm

(
ŷm(k + p|k)

)2

+
N∑

n=1

λn

(
∆un(k + p− 1|k)

)2

]
, (10)

where ŷm(k + p|k) is the predicted output trajectory,
∆un(k+p−1|k) stands for the future control moves (de-
cision variables),µm > 0 and λn ≥ 0 denote weighting
coefficients. The set point values, temporarily only, are
assumed to be zero, which implies a “regulator” problem
formulation.

At time instant k an optimal trajectory over the
whole infinite horizon is determined. Because at the
time stepk + 1 no new information is available, the ob-
tained solution coincides with the “tail” of the previous
one (Bellman’s principle of optimality). Assuming the
disturbance-free case and a perfect model, the decreas-
ing property of the performance indexJ(k), used as a
Lyapunow function, implies stability (e.g. Maciejowski,
2002; Tatjewski, 2002). To obtain a computationally solv-
able optimisation problem one has to express the perfor-
mance index (10) in terms of a finite number of parame-
ters. In order to guarantee stability, it is necessary to find a
method which makes it possible to calculate the prediction
to the infinity.

The control horizon of lengthHc is introduced, and
hence

∆un(k + p|k) = 0 for p ≥ Hc. (11)

The performance index (10) can be then rewritten as

J(k) =
∞∑

p=1

M∑
m=1

µm

(
ŷm(k + p|k)

)2

+
Hc−1∑
p=0

N∑
n=1

λn

(
∆un(k + p|k)

)2
. (12)

Defining vectors of lengthsM and N , respectively,

ŷ(k + p|k) =


ŷ1(k + p|k)

...

ŷM (k + p|k)

 ,

∆u(k + p|k) =


∆u1(k + p|k)

...

∆uN (k + p|k)

 ,

(13)



M. Ławryńczuk and P. Tatjewski170

the performance index (12) is given by

J(k) =
∞∑

p=1

‖ŷ(k + p|k)‖2
M0

+
Hc−1∑
p=0

‖∆u(k + p|k)‖2
Λ0

,

(14)
where the diagonal matricesM0 and Λ0 of dimensions
M and N are composed of coefficientsµm and λn, re-
spectively.

As far as stable plants are concerned, the receding
horizon predictive control algorithm with performance in-
dex (14) andHc ≥ 1 is stable, as was proved in (Muske
and Rawlings, 1993; Rawlings and Muske, 1993). It also
holds true in the case of constraints imposed on inputs,
because the parameters of the model, current state of the
plant and horizon lengthHc do not affect the feasibil-
ity of the optimisation problem. The performance index
employed in (Muske and Rawlings, 1993) penalises pre-
dicted output values with a weighting matrixM0≥ 0,
control increments with a weighting matrixΛ0≥ 0 and,
additionally, control levels with a positive-definite weight-
ing matrix. In the case of predictive control algorithms
based on input-output models, for example DMC or GPC,
control levels are not taken into account. The stability re-
sults from (Muske and Rawlings, 1993) are still applica-
ble, provided that the matrixM0 is positive definite and
y(k) → 0 implies x(k) → 0, as was discussed in (Ma-
ciejowski, 2002; Tatjewski, 2002). Thus, it is assumed
that µm > 0 and λn ≥ 0.

In order to express the infinite sum in the perfor-
mance index (14) in terms of a finite number of param-
eters, it is split into two parts

∞∑
p=1

‖ŷ(k + p|k)‖2
M0

=
Hc−1∑
p=1

‖ŷ(k + p|k)‖2
M0

+
∞∑

p=Hc

‖ŷ(k + p|k)‖2
M0

. (15)

In the case of a “regulator” problem, taking into ac-
count (11), the input profile has to satisfy the condition

un(k + p|k) = 0 for p ≥ Hc, (16)

otherwise the cost function (14) would be unbounded
(e.g. Maciejowski, 2002). Hence, using the state space
model (4), we obtain

ŷ(k + Hc|k) = Cx(k + Hc|k),

ŷ(k + Hc + 1|k) = CAx(k + Hc|k),

ŷ(k + Hc + 2|k) = CA2x(k + Hc|k),
...

(17)

Therefore, the prediction from time instantHc to infinity
in the performance index (15) can be written as

∞∑
p=Hc

‖ŷ(k + p|k)‖2
M0

=
∞∑

p=Hc

xT (k + p|k)CT M0Cx(k + p|k)

= xT (k + Hc|k)

[ ∞∑
i=0

(AT )iCT M0CAi

]

× x(k + Hc|k). (18)

If the plant is stable, the sum in the brackets is convergent.
The matrix

M∞ =
∞∑

i=0

(AT )iCT M0CAi (19)

is the solution to the matrix Lyapunov equation

AT M∞A + CT M0C = M∞ (20)

because

M∞ = CT M0C +
∞∑

i=1

(AT )iCT M0CAi

= CT M0C + AT M∞A. (21)

Finally, for (15) and (18) the performance index (14) can
be written as a function defined over the finite horizonHc

with an additional penalty term which depends only on the
predicted state at the end of the control horizon,

J(k) = ‖x(k + Hc|k)‖2
M∞

+
Hc−1∑
p=1

‖ŷ(k + p|k)‖2
M0

+
Hc−1∑
p=0

‖∆u(k + p|k)‖2
Λ0

. (22)

Defining the vectors of lengthsM(Hc − 1) and NHc:

ŷ(k) =


ŷ(k + 1|k)

...

ŷ(k + Hc − 1|k)

 ,

∆u(k) =


∆u(k|k)

...

∆u(k + Hc − 1|k)

 ,

(23)



An infinite horizon predictive control algorithm based on multivariable input-output models 171

respectively, the performance index (14) has the following
form:

J(k) = ‖x(k + Hc|k)‖2
M∞

+ ‖ŷ(k)‖2
M + ‖∆u(k)‖2

Λ ,
(24)

where the diagonal matrices of dimensionsM(Hc − 1)
and NHc are

M =


M0

...

M0

, Λ =


Λ0

...

Λ0

, (25)

respectively.

In order to calculate the optimal input profile, the
first and the second part of the performance index (24)
have to be expressed as functions of∆u(k). As far
as practical applications are concerned, nonzero set-point
values should be also possible. For linear plants the
predicted outputŷ(k) can be split into the forced re-
sponseG∆u(k) and the free responsesy0(k) (e.g. Ca-
macho and Bordons, 1999; Maciejowski, 2002; Tatjewski,
2002). Defining the vectorsy0(k) andyref(k) of lengths
M(Hc − 1):

y0(k) =



y0
1(k + 1|k)

...

y0
M (k + 1|k)

...

y0
1(k + Hc − 1|k)

...

y0
M (k + Hc − 1|k)


,

yref(k) =



yref
1 (k)

...

yref
M (k)

...

yref
1 (k)

...

yref
M (k)


,

(26)

and the matrixG of dimensionM(Hc − 1)×NHc:

G =


S1 0 . . . 0 0
S2 S1 . . . 0 0
...

...
...

...
...

SHc−1 SHc−2 . . . S1 0

 , (27)

where the submatrices

Sk =


s1,1

k . . . s1,N
k

...
...

...

sM,1
k . . . sM,N

k

 (28)

contain step response coefficients of the multivariable pro-
cess (1), the performance index (24) can be rewritten as

J(k) =
∥∥x(k + Hc|k)− xref(k)

∥∥2

M∞

+
∥∥G∆u(k) + y0(k)− yref(k)

∥∥2

M

+ ‖∆u(k)‖2
Λ . (29)

The penalised state vector in (29) is

x(k + Hc|k)− xref(k) =

[
xu(k + Hc|k)− xref

u (k)
xy(k + Hc|k)− xref

y (k)

]
(30)

with the subvectorsxref
u (k) and xref

y (k) of lengths
N(nb− 1) and Mna, respectively,

xref
u (k) =



uref
1 (k)

...

uref
N (k)

...

uref
1 (k)

...

uref
N (k)


, xref

y (k) =



yref
1 (k)

...

yref
M (k)

...

yref
1 (k)

...

yref
M (k)


. (31)

The input values which correspond to the set-points are
calculated from the static characteristic of the plant. Using
the input-output model (1), assuming thatz−1 = 1, we
get 

uref
1 (k)

...

uref
N (k)

 = Gs


yref
1 (k)

...

yref
M (k)

 , (32)

where the matrixGs of dimensionN ×M is

Gs = B+(1)A(1) (33)

and “+” denotes the Moore-Penrose pseudo-inverse (e.g.
Golub and Van Loan, 1989).

Although in the case of stable plants the control hori-
zon can be as short as1 (Muske and Rawlings, 1993;
Rawlings and Muske, 1993), it is convenient to impose a
technical condition

Hc ≥ max(na, nb− 1) (34)

which implies that the state vector at the end of the finite
control horizon, i.e.x(k + Hc|k), contains only elements
of the vector∆u(k) and future outputs belonging to the
vector ŷ(k). The first part of the penalised predicted state
vector at the end of the control horizon can be written as

xu(k + Hc|k)− xref
u (k) = E∆u(k) + vu(k), (35)
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where the matrixE of dimensionN(nb−1)×NHc and
the vectorvu(k) of length N(nb− 1) are

E =



Hc−nb+2︷ ︸︸ ︷
I . . . I

nb−2︷ ︸︸ ︷
0 . . . 0

I . . . I I . . . 0
...

...
...

...
...

...

I . . . I I . . . I


,

vu(k) =



u1(k − 1)− uref
1 (k)

...

uN (k − 1)− uref
N (k)

...

u1(k − 1)− uref
1 (k)

...

uN (k − 1)− uref
N (k)


,

(36)

and I and 0 are square matrices of dimensionsN ×N .

For the second part of the penalised state vector,
again splitting the predicted output into forced and free
responses, we obtain

xy(k + Hc|k)− xref
y (k) = Gy∆u(k) + vy(k), (37)

where the matrixGy of dimensionMna×NHc is

Gy =


SHc−na+1 SHc−na . . . 0
SHc−na+2 SHc−na+1 . . . 0

...
...

...

SHc
SHc−1 . . . S1

 (38)

and the vectorvy(k) of length Mna is

vy(k) =



y0
1(k − na + 1 + Hc|k)− yref

1 (k)
...

y0
M (k − na + 1 + Hc|k)− yref

M (k)
...

y0
1(k + Hc|k)− yref

1 (k)
...

y0
M (k + Hc|k)− yref

M (k)


, (39)

wherey0
m(k + p|k) denote free response elements of the

plant.

Taking into account (35) and (37), the penalised state
vector can be then expressed as

x(k + Hc|k)− xref(k) = G0∆u(k) + v(k), (40)

where

G0 =

[
E
Gy

]
, v(k) =

[
vu(k)
vy(k)

]
. (41)

Finally, using (40), we obtain the performance in-
dex (29) which depends explicitly on the input increments
∆u(k):

J(k) = ‖G0∆u(k) + v(k)‖2
M∞

+
∥∥G∆u(k) + y0(k)− yref(k)

∥∥2

M

+ ‖∆u(k)‖2
Λ . (42)

2.3. Performance Index Minimisation
— the Unconstrained Case

Having equated the derivative ofJ(k) given by (42) to
0, we obtain the optimal control increments

∆u(k) =
[
GT

0 M∞G0 + GT MG + Λ
]−1

×
[
GT M

(
yref(k)− y0(k)

)
−GT

0 M∞v(k)
]

(43)

which can be written as

∆u(k) = K(yref(k)− y0(k)) + Lv(k), (44)

where

K =
[
GT

0 M∞G0 + GT MG + Λ
]−1

GT M,

L = −
[
GT

0 M∞G0 + GT MG + Λ
]−1

GT
0 M∞.

(45)

If the state penalty term is excluded from the perfor-
mance index, i.e.M∞ = 0, the obtained formulae (44)
and (45) coincide with those for the classical GPC algo-
rithm, namely

∆u(k) =
[
GT MG + Λ

]−1
GT M

(
yref(k)− y0(k)

)
.

(46)

Although the solution given by (43) is formally cor-
rect, in this paper a computationally safer method is devel-
oped, according to the indications given in (Maciejowski,
2002). The reason is that the matrixGT

0 M∞G0 +
GT MG + Λ, especially in multivariable cases, may suf-
fer from ill-conditioning. Such a phenomenon may result
in numerical problems. One can notice that the perfor-
mance index (42) can be expressed as

J(k) =

∥∥∥∥∥∥∥
 S∞(G0∆u(k) + v(k))

SM(G∆u(k) + y0(k)− yref(k))
SΛ∆u(k)


∥∥∥∥∥∥∥

2

,

(47)
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where

ST
∞S∞ = M∞, ST

MSM = M, ST
ΛSΛ = Λ. (48)

If matrices M and Λ are diagonal, as is assumed
in the paper, so areSM and SΛ. For positive definite
ones, Cholesky factorisation should be used. Because the
state-space representation given by (7) and (8) results in a
positive semidefinite matrixM∞, the matrixS∞ is cal-
culated using a singular value decomposition (Golub and
Van Loan, 1989). For a symmetric matrixM∞ we have

M∞ = USUT , (49)

where the diagonal matrixS is also positive semidefinite
and the matrixU is unitary. Hence

S∞ = S
1
2 UT . (50)

The optimal value of the vector∆u(k) is then the least-
squares solution of the equation S∞(G0∆u(k) + v(k))

SM(G∆u(k) + y0(k)− yref(k))
SΛ∆u(k)

 = 0. (51)

The solution to the control problem is then obtained as

∆u(k) = P

 −S∞v(k)
SM(yref(k)− y0(k))

0

 , (52)

where 0 is a vector of lengthNHc. The matrix P of
dimensionNHc × (Mna + N(nb− 1) + M(Hc − 1) +
NHc) is calculated as a Moore-Penrose pseudoinverse

P =

 S∞G0

SMG
SΛ


+

=
[

P1 P2 P3

]
, (53)

where the submatricesP1, P2, P3 are of dimensions
NHc×(Mna+N(nb−1)), NHc×M(Hc−1), NHc×
NHc, respectively. From (52) and (53) the optimal input
profile is then obtained by means of (44), but the matrices
K and L are calculated without any inversion, namely,

K = P2SM, L =−P1S∞. (54)

As far as the pseudoinverse in (53) is concerned, the
matrix P it calculated from

P = VΣT
1 UT , Σ1=


1
σ1

. . . 0

...
...

...

0 . . .
1

σ
NHc

0


(55)

using the following SVD decomposition: S∞G0

SMG
SΛ

 = UΣVT ,

Σ =


σ1 . . . 0
...

...
...

0 . . . σ
NHc

0

 .

(56)

2.4. Forced and Free Responses

In the sequel it is shown that the forced and, especially,
the free response can be easily calculated without resort-
ing to a matrix Diophantine equation. In the derivation
of the GPC algorithm a minimal-variance predictor is ap-
plied (Camacho and Bordons, 1999; Clarkeet al., 1987a;
1987b; Tatjewski, 2002). As far as the most practical
white noise case is concerned, it can be easily proved that
the resulting prediction is equivalent to the determinis-
tic one obtained by assuming the so-called “DMC type”
disturbance model (Tatjewski, 2002). Prediction errors,
resulting from the model’s inaccuracies and unmeasured
disturbances, are treated collectively. They are calcu-
lated using actual (measured) valuesym(k) and values
ym(k|k − 1) obtained from the model as follows:

dm(k) = ym(k)− ym(k|k − 1). (57)

Using the model (1), we have

dm(k) = ym(k)−
N∑

n=1

nb∑
i=1

bm,n
i un(k − i)

+
na∑
i=1

am
i ym(k − i). (58)

It is typical of the “DMC type” disturbance model to as-
sume that disturbancesdm(k) are constant over the pre-
diction horizon. Such an approach turns out to effectively
compensate for both step and slowly varying disturbances,
which are usually encountered in industry. Moreover, it
also provides an integral action which eliminates a steady-
state offset. The general prediction equation is then

ŷm(k + p|k) = ym(k + p|k) + dm(k), (59)

where the quantityym(k + p|k) is obtained from the
model.
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The prediction equation for time instantk + 1|k is
derived from (1), (58) and (59). We have

ŷm(k + 1|k) =
N∑

n=1

[
bm,n
1 ∆un(k|k) + bm,n

2 ∆un(k − 1)

+ · · ·+ bm,n
nb ∆un(k − nb + 1)

]
+ (1−am

1 )ym(k)+(am
1 −am

2 )ym(k−1)

+ · · ·+ (am
na−1 − am

na)ym(k − na + 1)

+ am
naym(k − na). (60)

It can be also rewritten in the form

ŷm(k + 1|k) =
N∑

n=1

[
gm,n
0 (1)∆un(k|k)

+ gm,n
1 (1)∆un(k − 1)

+ · · ·+ gm,n
nb−1(1)∆un(k − nb + 1)

]
+ fm

0 (1)ym(k) + fm
1 (1)ym(k − 1)

+ · · ·+ fm
na(1)ym(k − na), (61)

where, for i = 0, . . . , nb− 1,

gm,n
i (1) = bm,n

i+1 (62)

and

fm
i (1) =


1− am

1 for i = 0,

am
i − am

i+1 for i = 1, . . . , na− 1,

am
i for i = na.

(63)

The prediction equation for time instantk + 2|k depends
on ŷm(k + 1|k). We have

ŷm(k + 2|k) =
N∑

n=1

[
gm,n
0 (1)∆un(k + 1|k)

+
(
fm
0 (1)gm,n

0 (1) + gm,n
1 (1)

)
∆un(k|k)

+ · · ·+
(
fm
0 (1)gm,n

nb−2(1) + gm,n
nb−1(1)

)
×∆un(k − nb + 2)

+ fm
0 (1)gm,n

nb−1(1)∆un(k − nb + 1)
]

+
(
fm
0 (1)fm

0 (1) + fm
1 (1)

)
ym(k)

+
(
fm
0 (1)fm

1 (1) + fm
2 (1)

)
ym(k − 1)

+ · · ·+
(
fm
0 (1)fm

na−1(1) + fm
na(1)

)
× ym(k − na + 1)

+ fm
0 (1)fm

na(1)ym(k − na). (64)

Similarly to (61), it can be rewritten as

ŷm(k + 2|k) =
N∑

n=1

[
gm,n
−1 (2)∆un(k + 1|k)

+ gm,n
0 (2)∆un(k|k)

+ · · ·+ gm,n
nb−1(2)∆un(k − nb + 1)

]
+ fm

0 (2)ym(k) + fm
1 (2)ym(k − 1)

+ · · ·+ fm
na(2)ym(k − na), (65)

where

gm,n
i (2)=


gm,n
0 (1) for i = −1,

fm
0 (1)gm,n

i (1) + gm,n
i+1 (1)
for i = 0, . . . , nb− 2,

fm
0 (1)gm,n

i (1) for i = nb− 1,
(66)

and

fm
i (2)=

{
fm
0 (1)fm

i (1) + fm
i+1(1) for i = 0, . . . , na− 1,

fm
0 (1)fm

i (1) for i = na.
(67)

In general, the output prediction (59) can be expressed as

ŷm(k + p|k) =
N∑

n=1

[p−1∑
i=0

gm,n
1−p+i(p)∆un(k+p−1−i|k)

+
nb−1∑
i=1

gm,n
i (p)∆un(k − i)

]

+
na∑
i=0

fm
i (p)ym(k − i), (68)

where

gm,n
i (p) =


gm,n

i+1 (p− 1) for i = 1− p, . . . ,−1,

fm
0 (p− 1)gm,n

i (1) + gm,n
i+1 (p− 1)

for i = 0, . . . , nb− 2,

fm
0 (p− 1)gm,n

i (1) for i = nb− 1,
(69)

and

fm
i (p) =


fm
0 (p− 1)fm

i (1) + fm
i+1(p− 1)

for i = 0, . . . , na− 1,

fm
0 (1)fm

i (1) for i = na.
(70)

The predictionŷm(k + p|k) is a linear function of deci-
sion variables∆un(k + p|k), past input values from time
instantk−nb to k−1 and past output values fromk−na
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to k. From (68), taking into account only future control
moves, we obtain the forced response

∆ym(k+1|k) =
N∑

n=1

bm,n
1 ∆un(k|k),

∆ym(k+2|k) =
N∑

n=1

[(
bm,n
1 +bm,n

2 −am
1 bm,n

1

)
∆un(k|k)

+ bm,n
1 ∆un(k + 1|k)

]
,

... (71)

It can be expressed as

∆ym(k + p|k) =
p∑

j=1

N∑
n=1

sm,n
j ∆un(k + p− j|k). (72)

Step response coefficients, comprising the submatri-
cesSk (28), resulting matricesGy (38) andG (27), are
then obtained recursively from

sm,n
j =

min(j,nb)∑
i=1

bm,n
i −

min(j−1,na)∑
i=1

am
i sm,n

j−i . (73)

From (68) the free response is also derived. Obvi-
ously, it is independent of future control moves:

y0
m(k + p|k) =

N∑
n=1

nb∑
i=1

em,n
i (p)un(k − i)

+
na∑
i=0

fm
i (p)ym(k − i), (74)

where

em,n
i (p)=



0 for i = 1, nb = 1,

gm,n
i (p) for i = 1, nb > 1,

gm,n
i (p)− gm,n

i−1 (p) for i=2, . . . , nb−1,

i < nb, nb > 1,

−gm,n
i−1 (p) for i = nb, nb > 1.

(75)

2.5. Closed-Form Control Law

Although unconstrained linear predictive control algo-
rithms result in precomputed off-line control laws, this is-
sue is given little consideration in the literature (Mayne,
2001), but is of fundamental importance as far as practical
implementations are concerned.

From the solution to the optimisation problem (44),
where K and L are given by (45) or (54), the control

increment of ther-th input at the current time instantk
is

∆ur(k|k) =
Hc−1∑
p=1

M∑
m=1

kr,(p−1)M+m

×
(
yref

m (k)− y0
m(k + p|k)

)
+

nb∑
p=1

N∑
n=1

lr,(p−1)N+n

(
un(k−1)−uref

n (k)
)

+
na∑

p=0

M∑
m=1

lr,Nnb+pM+m

×
(
y0

m(k−na+p+Hc|k)−yref
m (k)

)
. (76)

Inserting the free response (74), eliminating the quantities
uref

n (k) by means of (32) and after simple arithmetic ma-
nipulations, the analytical control law can be expressed as
a function of the reference trajectory as well as past input
and output values:

ur(k|k) =
M∑

m=1

kyref
r,myref

m (k) +
N∑

n=1

nb∑
j=1

ku
r,n(j)un(k − j)

+
M∑

m=1

na∑
j=0

ky
r,m(j)ym(k − j), (77)

where, forr = 1, . . . , N, m = 1, . . . ,M ,

kyref
r,m =

Hc−1∑
p=1

kr,s1 −
na∑

p=0

lr,s3 −
nb∑

p=1

N∑
n=1

lr,s2g
s
n,m, (78)

and for r = 1, . . . , N , n = 1, . . . , N , j = 1, . . . , nb,

ku
r,n(j)=



na∑
p=0

M∑
m=1

lr,s3e
m,n
j (s4)−

Hc−1∑
p=1

M∑
m=1

kr,s1e
m,n
j (p)

+
nb∑

p=1

lr,s3 + 1 for j = 1, r = n,

na∑
p=0

M∑
m=1

lr,s3e
m,n
j (s4)−

Hc−1∑
p=1

M∑
m=1

kr,s1e
m,n
j (p)

+
nb∑

p=1

lr,s3 for j = 1, r 6= n,

na∑
p=0

M∑
m=1

lr,s3e
m,n
j (s4)−

Hc−1∑
p=1

M∑
m=1

kr,s1e
m,n
j (p)

for j 6= 1, r 6= n,
(79)
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and for r = 1, . . . , N , m = 1, . . . ,M , j = 0, . . . , na,

ky
r,m(j) =

na∑
p=0

lr,s3f
m
j (s4)−

Hc−1∑
p=1

kr,s1f
m
j (p) (80)

and, where the auxiliary indices ares1 = (p− 1)M + m,
s2 = (p − 1)N + n, s3 = Nnb + pM + m, s4 =
p− na + Hc.

The implementation steps of the unconstrained ver-
sion of the algorithm are as follows. At first, for a given
input-output model (1), the matricesA, B, C, which
give the state-space formulation (4), are obtained accord-
ing to (7), (8), and the matrixGs is found from (33).
The control horizonHc is fixed using the condition (34)
and the weighting coefficientsµm > 0 and λn ≥ 0
are chosen according to the needs. The symmetric ma-
trix M∞ is then obtained as a solution to the discrete-
time Lyapunow equation (20). Step response coefficients
sm,n

k , comprising the matricesG (27) andGy (38), are
obtained from (73). Free response quotientsem,n

j (p) ,
fm

j (p) are calculated by means of (75), (63) and (70). The
matricesK and L are then calculated according to (45)
or, as is recommended, to (54). Finally, the coefficients
kyref

r,m, ku
r,n(j), ky

r,m(j) are determined from (78)–(80).
During on-line control, the current values of the input vari-
ables are calculated from the closed-form control law (77),
which, for a given model of the plant, is always a polyno-
mial of the same order, regardless of the length of the finite
control horizon and the weighting coefficients.

2.6. Performance Index Minimisation
— the Constrained Case

In the constrained case the performance index (42) is min-
imised subject to the following constraints:

umin
n ≤ un(k + p|k) ≤ umax

n ,

−∆umax
n ≤ ∆un(k + p|k) ≤ ∆umax

n

(81)

for n = 1, . . . , N , p = 0, . . . ,Hc − 1. Such a problem is
of the quadratic-programming type:

min
x

J(k) =
1
2
xT Hx + fT x,

xmin ≤ x ≤ xmax,

Ax ≤ b,

(82)

where

x = ∆u(k), xmin = −∆umax, xmax = ∆umax,

H = 2
[
GT

0 M∞G0 + GT MG + Λ
]
, (83)

f = 2
[
GT M(y0(k)− yref(k)) + GT

0 M∞v(k)
]
,

and

A =

[
−J
J

]
, b =

[
−umin + u(k − 1)
umax − u(k − 1)

]
. (84)

It can be effectively solved on-line by means of the avail-
able software packages. MatrixJ is of dimensionNHc×
NHc,

J =


I 0 0 . . . 0
I I 0 . . . 0
...

...
...

...
...

I I I . . . I

 , (85)

whereI and0 are square matrices of dimensionsN×N
and the following vectors are of lengthsNHc:

umin =



umin
1

...

umin
N
...

umin
1

...

umin
N


, umax =



umax
1

...

umax
N
...

umax
1

...

umax
N


,

u(k − 1) =



u1(k − 1)
...

uN (k − 1)
...

u1(k − 1)
...

uN (k − 1)


.

(86)

3. Simulation Results

The process under consideration is a stirred tank reactor
(Camacho and Bordons, 1999), which can be described
for small signals by the following transfer matrix (time
constants in min):[

y1(s)
y2(s)

]
=


1

1 + 0.7s

5
1 + 0.3s

1
1 + 0.5s

2
1 + 0.4s


[
u1(s)
u2(s)

]
, (87)

where the manipulated variablesu1 and u2 are the feed
flowrate and the flow of the coolant in the jacket, respec-
tively. The controlled variablesy1 and y2 are the effluent
concentration and the reactor temperature. Having discre-
tised the model with a sampling time of0.03 min, we
obtain

A(z−1) =

[
a1,1 0
0 a2,2

]
,
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wherea1,1 = 1−1.862885z−1+0.866877z−2 anda2,2 =
1− 1.869508z−1 + 0.873715z−2.

B(z−1) =

[
b1,1 b1,2

b2,1 b2,2

]
, (88)

where,

b1,1 = 0.041951z−1 − 0.037959z−2,

b1,2 = 0.475812z−1 − 0.455851z−2,

b2,1 = 0.058235z−1 − 0.054027z−2,

b2,2 = 0.445130z−1 − 0.136097z−2.

During all the experiments carried out, the weighting
coefficientsµ1, µ2 were set to1 and 5, respectively, and
λ1 = λ2 to 0.5.

For comparison, at first the unconstrained CRHPC
algorithm (Clarke and Scattolini, 1991) was considered.
The length of the control horizon has to satisfy the con-
dition Hc ≥ 5, which results in stable dead-beat control.
Figure 1 depicts simulation results. As one might expect, a
short horizon combined with terminal equality constraints
results in excessive input profiles and a huge overshoot,
which is unacceptable in practice. To overcome such ob-
stacles, the horizon was set to 20. It made it possible to
significantly reduce the amplitude of the input variables,
but the closed-loop behaviour is much slower.

Figure 2 depicts simulation results of the uncon-
strained infinite horizons predictive control algorithm,
with the control horizonsHc = 5 and Hc = 20 and
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Fig. 1. Simulation results of the unconstrained CRHPC algorithm:Hc = 5 (dashed) andHc = 20 (solid).

the same changes in the set-points as in the previous ex-
periment. The controller was implemented according to
the procedure described in Section 2.5, the current values
of the control variables were calculated by means of the
closed-form control law (77). When compared with the
CRHPC algorithm, its behaviour is appealing, i.e. the am-
plitudes of the input profiles and the overshoot are much
smaller. Because the infinite prediction horizon is used
and the plant is fast, the results are similar for both con-
trol horizons.

Finally, to reduce rapid changes in input variables,
the following constraints were taken into account:

umin
1 = −2, umax

1 = 2, ∆umax
1 = 0.5,

umin
2 = −0.5, umax

2 = 0.5, ∆umax
2 = 0.25.

(89)

At each time step, the quadratic programming problem
was solved as described in Section 2.6, the closed-form
free response was calculated using (74). The simulation
results of the infinite horizon algorithm are presented in
Fig. 3. Again, as in the unconstrained case, the input and
output variables forHc = 5 and Hc = 20 are hardly
distinguishable.

4. Summary

The paper presented a stabilising infinite hori-
zon predictive control algorithm for multivariable
input-output models. Using the theoretical back-
ground presented by (Muske and Rawlings, 1993;
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Fig. 2. Simulation results of the unconstrained infinite horizon predictive control algorithm:Hc = 5 (dashed) andHc = 20 (solid).
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Fig. 3. Simulation results of the constrained infinite horizon predictive control algorithm:Hc = 5 (dashed) andHc = 20 (solid).

Rawlings and Muske, 1993) in the state-space context,
the infinite horizon performance index was reformulated
as a finite horizon one with a penalty term. Two versions
of the controller were discussed: the unconstrained one,
for which an analytical stabilising control law can be
calculated beforehand using a numerically reliable SVD
decomposition, and the constrained one, which results in
a quadratic programming problem to be solved on-line. It

is also shown how forced and free responses can be easily
calculated without solving a matrix Diophantine equation,
assuming the “DMC-type” disturbance model.

A small computational burden and a simple imple-
mentation procedure are the advantages of the described
algorithm. In fact, when compared with the standard
GPC and DMC algorithms, the only additional task is to
solve the discrete-time Lyapunow equation, the closed-
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form control law and the optimisation problem being of
comparable complexity. Moreover, when compared with
a terminally constrained predictive control scheme, for ex-
ample of a CRHPC type (Clarke and Scattolini, 1991),
the algorithm reveals its superiority. The lack of equality
constraints makes the solution to the optimisation prob-
lem easier from the numerical point of view. First and
foremost, terminal constraints, particularly combined with
relatively short horizons, result in highly excessive, practi-
cally unacceptable, input profiles and big overshoots. The
presented approach is also computationally less demand-
ing in comparison with other stabilising algorithms, for
example LQGPC (Ordyset al., 2000).

The presented algorithm is different from GPC∞

(Scokaert, 1997): the state vector is defined in a differ-
ent way—it comprises not only past output, but also input
values, the “DMC type” disturbance model is assumed,
and hence the model of the plant is of the ARX rather
than the CARIMA type. Because only stable processes
are considered in the paper, the derivation of the algorithm
is much simpler in comparison with GPC∞. However,
the presented algorithm can be easily modified to deal
with unstable plants. It is only necessary to decompose
the model into its stable and unstable parts by means of
an eigenvalue-eigenvector (Jordan) decomposition and to
take into account additional equality constraints to force
the unstable modes to be at zero (in the case of a “reg-
ulator” problem formulation) at the end of the finite con-
trol horizon while only the stable modes should contribute
to the performance index. It is possible to reduce the
number of decision variables beforehand using the con-
straints, as was done in GPC∞, or it may be convenient to
let the optimisation routine decide how to use the equal-
ity constraints, especially in multivariable cases (e.g. Ma-
ciejowski, 2002).
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