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Old movies suffer from various types of degradation: severe noise, blurred edges of objects (low contrast), scratches, spots,
etc. Finding an efficient denoising method is one of the most important and one of the oldest problems in image sequence
processing. The crucial thing in image sequences is motion. If the motion is insignificant, then any motion noncompensated
method of filtering can be applied. However, if the noise is significant, then this approach gives most often unsatisfactory
results. In order to increase the quality of frames, motion compensated filters are usually applied. This is a very time
consuming and awkward approach due to serious limitations of optical flow methods. In this paper, a review of various
filters with motion detection when applied to the processing of image sequences coming from old movies is presented.
These filters are nonlinear and based on the concept of multistage median filtering or mathematical morphology. Some
new filters are proposed. The idea of these new filters presented here is to detect moving areas instead of performing
full estimation of motion in the sequence and to apply exclusively 2D filters in those regions while applying 3D motion
noncompensated filters in static areas, which usually significantly reduces the computational burden.
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1. Introduction

The idea of noise reduction by using temporal or spatio-
temporal filtering in order to improve image quality has
been described in the literature (Huang, 1981; Brailean
et al., 1995; Sezan and Lagendijk, 1993). It is usually
a kind of generalization of 2D nonlinear image filtering
techniques (Mitra and Sicuranza, 2001) for three dimen-
sions. These systems most often use motion compen-
sated filtering (Vega-Riveros and Jabbour, 1989), which
is a very time-consuming method. In the case of the mo-
tion detection approach, temporal filtering is only applied
in the unchanged (static) areas of the frame. This may be
achieved by explicitly segmenting an image into changing
and nonchanging areas, by a nonlinear filtering approach
or other methods. These algorithms have the disadvan-
tage that noise cannot be reduced in moving areas without
modifying image details, and noise may appear and dis-
appear as objects begin and stop moving. Although noise
in moving areas is masked to some extent by the motion,
it will still be visible in slowly moving regions. The au-
thor has concentrated mainly on mulstistage median-like
filters, but other approaches may also be applied, e.g.,
those based on the wavelet technique (Bruni and Vitulano,
2004; Kokaram, 1993).

2. Basic Notation

We denote by a{·} a discrete spatiotemporal sequence
such that {a(n1, n2, n3) n1, n2, n3 ∈ Z}, where Z is
the set of integers, and we consider a set samples inside a
cubic window of the sizes (2N+1)×(2N+1)×(2N+1)
at the centered location: {a(n1+l1, n2+l2, n3+l3); N ≤
l1, l2, l3 ≤ N}. At each point, the image sequence
takes on some value in the set Zk = {0, 1, . . . , 255}, so
that a(n) ∈ Zk. We assume that the three-dimensional
spatiotemporal image sequence had been sampled before
the filtering stage. The spatial indexing is denoted by
(n1, n2), while (n3) refers to time indexing. For no-
tational simplicity, the vector notation is also sometimes
used, n = (n1, n2, n3), where n ∈ Z

3.

Now we define the unidirectional subsets
W1,W2,W3,W4,W5 of the cubic window as
follows:

W1[a(n)] =
{
a(n1 + l1, n2, n3) : −N ≤ l1≤N

}
,

W2[a(n)] =
{
a(n1 + l1, n2 + l1, n3) : −N ≤ l1≤N

}
,

W3[a(n)] =
{
a(n1, n2 + l1, n3) : −N ≤ l1≤N

}
,
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W4[a(n)] =
{
a(n1 + l1, n2 − l1, n3) : −N ≤ l1≤N

}
,

W5[a(n)] =
{
a(n1, n2, n3 + l1) : −N ≤ l1≤N

}
. (1)

Additionally, we define five unidirectional subsets
V1,V2,V3,V4,V5 of the size (2N + 1) of the
cubic window slightly different from the subsets
W1,W2,W3,W4,W5 (without the common center
point) as follows:

V1[a(n)] =
{

a(n1 + l1, n2, n3) :

−N ≤ l1 ≤ N ; l1 �= 0
}
,

V2[a(n)] =
{

a(n1 + l1, n2 + l1, n3) :

−N ≤ l1 ≤ N ; l1 �= 0
}
,

V3[a(n)] =
{

a(n1 + n2 + l1, n3) :

−N ≤ l1 ≤ N ; l1 �= 0
}
,

V4[a(n)] =
{

a(n1 + l1, n2 − l1, n3) :

−N ≤ l1 ≤ N ; l1 �= 0
}
,

V5[a(n)] =
{

a(n1, n2, n3 + l1) :

−N ≤ l1 ≤ N ; l1 �= 0
}
.

(2)

3. Three–Dimensional Unidirectional
Multistage Median Filters

Two-dimensional multistage median filtering was intro-
duced by Nieminen (1987), and the 3-D version of
max/median was elaborated by Arce (1991). It was de-
veloped as a method of combining the basic subfilters that
operate the first stage of a cascade filtering substructure so
as to match the structure by the filter window. These sub-
filters are designed to preserve a feature of similar gray
levels in one direction. By incorporating several subfil-
ters, a basic image feature oriented in any direction can be
preserved by the filter. The type of feature to be presented
determines the subclass of the Multistage Median Filters
(MMF). If a feature spans a 1-D line segment (in a 3-D
space), the multistage filter is defined as a unidirectional
MMF. If the feature spans two line segments, each in or-
thogonal direction (e.g., one in space, the other in time),
then the filter is defined as a bidirectional MMF: if the
features spans three line segments, the filter is called a
tridirectional MMF, etc. The tree structured median op-
erations are used to make the filters insensitive to detail
orientations. By the details of an image we usually mean
pixels inside particular areas which have high mutual cor-
relation (e.g., narrow lines). Although the traditional me-
dian filters preserve rather well those details of an image
that are larger than about the window size, details that are

smaller than the size of the window tend to disappear. By
using the concept of the multistage median filter, details
which are significantly smaller than the size of the win-
dow can also be preserved.

Having in mind our basic notation, we can now de-
fine

zl(n) = med(a(·)) ∈ Wl[a(n)], 1 ≤ l ≤ 5.

The output of the unidirectional multistage
max/min/median filter is defined by (Arce, 1991):

y(n) = med
(
zmax(n), zmin(n), a(n)

)
, (3)

where
zmax(n) = max

1≤l≤5

(
zl(n)

)
,

zmin(n) = min
1≤l≤5

(
zl(n)

)
.

We can present now a new filter called a 3DUMM-lev3
(three-dimensional unidirectional multistage median filter
– three levels version) defined as

y3D
3lev(n)=med

(
yw1,w3,w5

(n), yw2,w4,w5
(n), a(n)

)
, (4)

where

yw1,w3,w5
(n) = med

(
z1(n), z2(n), z5(n)

)
,

yw2,w4,w5
(n) = med

(
z2(n), z4(n), z5(n)

)
.

The filter 3DUMM-lev4 can be expressed as

y3D
4lev(n)=med

(
ŷw1,w3,w5(n), ŷw2,w4,w5(n), a(n)

)
, (5)

where

ŷw1,w3,w5(n) = med
(
yw1,w5(n), yw3,w5(n), a(n)

)
,

ŷw2,w4,w5(n) = med
(
yw2,w5(n), yw4,w5(n), a(n)

)
,

and

yw1,w5(n) = med
(
z1(n), z5(n), a(n)

)
,

yw2,w5(n) = med
(
z2(n), z5(n), a(n)

)
,

yw3,w5(n) = med
(
z3(n), z5(n), a(n)

)
,

yw4,w5(n) = med
(
z4(n), z5(n), a(n)

)
.
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The 3D versions of these filters with motion detec-
tion are as follows:

(a) Three–level version

y3levwmd(n) =

⎧⎨
⎩

y3D
3lev(n) if n ∈ UCR,

y2D
3lev(n) if n ∈ CR,

(6)

where

y2D
3lev = med

(
yw1,w3

(n), yw2,w4
(n), a(n)

)
, (7)

yw1,w3(n) = med
(
z1(n), z2(n), a(n)

)
,

yw2,w4(n) = med
(
z2(n), z4(n), a(n)

)
.

In the 2D case we have n = (n1, n2).

(b) Four-level version:

y4levwmd(n) =

⎧⎨
⎩

y3D
4lev(n) if n ∈ UCR,

y2D
2lev(n) if n ∈ CR.

(8)

UCR means “unchanged region”, and CR means
“changed region”.

4. Motion Detection

We would like to avoid the application of motion com-
pensated filters, due to their significant computational
burden. The main idea is to distinguish between static
and moving areas of the sequence. In the static regions
we can apply 3D (spatio-temporal) nonmotion compen-
sated filters, while in moving areas we use exclusively
a 2D (only within this one frame) filter. Suppose that
we have three succeeding frames of the same sequence
a(n1, n2, n3 − 1), a(n1, n2, n3), a(n1, n2, n3 + 1), and
we consider the pixel of a(n1, n2, n3) described by a pair
of spatial coordinates (n1, n2) of the frame n3. Then our
motion detection procedure is as follows:

1. Compute

Δ(n1,n2)
f = |a(n1, n2, n3 + 1) − a(n1, n2, n3)|

and

Δ(n1,n2)
b = |a(n1, n2, n3) − a(n1, n2, n3 − 1)|.

2. Check if Δ(n1,n2)
f ≥ T1 and if Δ(n1,n2)

b ≥ T2.

3. If both inequalities are true, then perform the follow-
ing steps (otherwise, take the next pixel).

4. Check analogical temporal differences for the
whole 4-neighborhood (for l1 = 1) of the pixel
(n1, n2) belonging to the set

N 4
n1,n2,n3

= V1[a(n)] ∪ V3[a(n)]

=
{
a(n1 + 1, n2, n3), a(n1 − 1, n2, n3),

a(n1, n2 + 1, n3), a(n1, n2 − 1, n3)
}
,

i.e.,

Δ(n1+1,n2)
f , Δ(n1−1,n2)

f , Δ(n1,n2+1)
f , Δ(n1,n2−1)

f ,

Δ(n1+1,n2)
b , Δ(n1−1,n2)

b , Δ(n1,n2+1)
b , Δ(n1,n2−1)

b .

5. Check if at least one of the following conditions is
fulfilled:

(Δ(n1,n2)
f ≥ T1 & if Δ(n1,n2)

b ≥ T2

& Δ(n1+1,n2)
f ≥ T1 & Δ(n1+1,n2)

b ≥ T2),

OR

(Δ(n1,n2)
f ≥ T1 & if Δ(n1,n2)

b ≥ T2

& Δ(n1−1,n2)
f ≥ T1 & Δ(n1−1,n2)

b ≥ T2),

OR

(Δ(n1,n2)
f ≥ T1 & if Δ(n1,n2)

b ≥ T2

& Δ(n1,n2+1)
f ≥ T1 & Δ(n1,n2+1)

b ≥ T2),

OR

(Δ(n1,n2)
f ≥ T1 & if Δ(n1,n2)

b ≥ T2

& Δ(n1,n2−1)
f ≥ T1 & Δ(n1,n2−1)

b ≥ T2).

6. If the previous point is true (if it is false, then apply
a 3D motion noncompensated filter), then the pixel
(n1, n2, n3) belongs to the changed region and it
may be filtered by using exclusively 2D filters, i.e.,
operating within the same frame (using spatial and
not temporal neighborhood of pixels).

Here T1 and T2 denote certain thresholds selected
heuristically.

5. New Three-Dimensional Bidirectional
Multistage Median Filters

Beside new unidirectional filtering tools, also a few bidi-
rectional filters were elaborated by the author of this pa-
per. They take advantage of different types of neighbor-
hoods for particular frames of the sequence. The first filter
(called the 3–Dx+x filter) is defined as follows:

yF1(n)=

⎧⎪⎪⎨
⎪⎪⎩

med [yn3−1
2,4 (n), yn3

1,3(n), yn3−1
2,4 (n)]

if n ∈ UCR,

yMED9(n) if n ∈ CR.

(9)
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The second filter (called the 3–Dxxx filter) is defined as

yF1(n)=

⎧⎪⎪⎨
⎪⎪⎩

med [yn3−1
2,4 (n), yn3

2,4(n), yn3−1
2,4 (n)]

if n ∈ UCR,

yMED9(n) if n ∈ CR,

(10)

The third filter (called the 3–D+++ filter) is defined as

yF1(n)=

⎧⎪⎪⎨
⎪⎪⎩

med [yn3−1
1,3 (n), yn3

1,3(n), yn3−1
1,3 (n)]

if n ∈ UCR,

yMED9(n) if n ∈ CR.

(11)

where

yMED9(n) = med
(
a(n) ∈ W3x3[a(n)]

)
,

W3x3[a(n)] =
{
a(n1 + l1, n2 + l2, n3) :

− 1 ≤ l1, l2 ≤ 1
}
,

yn3−1
2,4 (n) = med

(
a(n1, n2, n3 − 1)

∈ W2D
2,4 [a(n1, n2, n3 − 1)]

)
,

yn3
2,4(n) = med

(
a(n1, n2, n3 − 1)

∈ W2D
2,4 [a(n1, n2, n3)]

)
,

yn3+1
2,4 (n) = med

(
a(n1, n2, n3 + 1)

∈ W2D
2,4 [a(n1, n2, n3 + 1)]

)
,

yn3−1
1,3 (n) = med

(
a(n1, n2, n3 − 1)

∈ W2D
1,3 [a(n1, n2, n3 − 1)]

)
,

yn3
1,3(n) = med

(
a(n1, n2, n3)

∈ W2D
1,3 [a(n1, n2, n3)]

)
,

yn3+1
1,3 (n) = med

(
a(n1, n2, n3 + 1)

∈ W2D
1,3 [a(n1, n2, n3 + 1)]

)
,

W2D
2,4 [a(n)] = W2[a(n)] ∪ W4[a(n)],

W2D
1,3 [a(n)] = W1[a(n)] ∪ W3[a(n)],

W2D
1 [a(n)] =

{
a(n1 + l1, n2, n3) : −N ≤ l1 ≤ N

}
,

W2D
2 [a(n)] =

{
a(n1+l1, n2+l1, n3):−N ≤ l1≤N

}
,

W2D
3 [a(n)] =

{
a(n1, n2 + l1, n3):−N ≤ l1≤N

}
,

W2D
4 [a(n)] =

{
a(n1+l1, n2−l1, n3):−N ≤ l1≤N

}
.

(12)

6. Morphological Filters with Motion
Detection

Mathematical morphology has demonstrated its capabili-
ties in many areas of image processing and it is often also
very efficient in noise suppression.

6.1. 2D Noncompensated Morphological Filters

If we refer to (1), then we can partition each window
Wl[a(n)] (l = 1, . . . , 4) into (N+1) overlapping subsets
Sl,m of consecutive elements, and the 2D morphological
(unidirectional) Close-Open filter output can be expressed
as (Arce and Foster, 1989):

y2DCO(n)= max
1 ≤ m ≤ N+1

1 ≤ l ≤ 4

(
min

[
a(·)∈ S1l,m[C1(n)]

])
,

(13)
where

C1(n) = min
1 ≤ m ≤ N+1

1 ≤ l ≤ 4

(
max

[
a(·) ∈ S1l,m[a(n)]

])
.

(14)
On the other hand, the output of the 2D morphological
Open-Close filter can be defined as

y2DOC(n) = min
1 ≤ m ≤ N +1

1 ≤ l ≤ 4

(
max

[
a(·) ∈ S2l,m[C2(n)]

])
,

(15)
where

C2(n) = max
1 ≤ m ≤ N+1

1 ≤ l ≤ 4

(
min

[
a(·) ∈ S2l,m[a(n)]

])
.

(16)

6.2. 3D Noncompensated Morphological Filters

Analogically, the output of the three-dimensional (unidi-
rectional) Close-Open filter is

y3DCO(n) = max
1 ≤ m ≤ N+1

1 ≤ l ≤ 5

(
min

[
a(·) ∈ S3l,m[C3(n)]

])
,

(17)
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where

C3(n) = min
1 ≤ m ≤ N + 1

1 ≤ l ≤ 5

(
max

[
a(·) ∈ S3l,m[a(n)]

])
.

(18)
Finally, the output of the 3D morphological (unidi-

rectional) Open-Close filter is

y3DOC(n) = min
1 ≤ m ≤ N + 1

1 ≤ l ≤ 5

(
max

[
a(·) ∈ S4l,m[C4(n)]

])
,

(19)
where

C4(n) = max
1 ≤ m ≤ N + 1

1 ≤ l ≤ 5

(
min

[
a(·) ∈ S4l,m[a(n)]

])
.

(20)

6.3. Morphological Filters with Motion Detection

3D morphological filters with motion detection are as fol-
lows:

ywmd
3DCO(n) =

{
y3DCO(n) if n ∈ UCR,

y2DCO(n) if n ∈ CR,
(21)

and

ywmd
3DOC(n) =

{
y3DOC(n) if n ∈ UCR,

y2DOC(n) if n ∈ CR.
(22)

7. General Multistage Median Filters
(r–filters)

Let ak
l (n), . . . , ak

2N(n) denote samples in Vk[a(n)],
k = 1, 2, 3, 4, 5 when they are sorted in increasing order,
and let

S1(n) = min
(
ak

r (n), 1 ≤ k ≤ 5
)
,

S2(n) = max
(
ak
2N−r+1(n), 1 ≤ k ≤ 5

)
,

where 1 ≤ r ≤ N . Then the output of the r-th filter in
the class is defined by (Wang, 1992):

y3D
r (n) = med

(
S1(n), S2(n), a(n)

)
. (23)

The 2D version of this filter looks very similar to the above
expression — the main difference is that instead of n =
(n1, n2, n3) we have n = (n1, n2), and instead of k =
1, 2, 3, 4, 5 we have k = 1, 2, 3, 4. The corresponding
version of this filter with motion detection is

ywmd
r (n) =

{
y3D

r if n ∈ UCR,

y2D
r (n) if n ∈ CR.

(24)

8. Remarks on Difficulties with
Computations of Output Probability
Functions

The probability density function of the median of inde-
pendent identically distributed (i.i.d.) random variables
was considered in (David, 1980; Nieminen et al., 1987).
Let x1, x2, . . . , xn be variables that have a distribution
function F (x) and a density function f(x) = F ′(x).

The density function g(x) of the quantity
MED(x1, x2, . . . , xn) for n being an odd number
can be expressed as

g(x) = n

(
n − 1

(n − 1)/2

)
f(x)

× F (x)(n−1)/2
[
1 − F (x)

](n−1)/2
. (25)

Suppose we that have to compute probability density func-
tions of the median of nonidentically distributed random
variables. This case is more complicated. The density
of the median over samples from three different distri-
butions (Ataman et al., 1981; Nieminen et al., 1987) is
as follows: Let x1, x2, x3 be independent random vari-
ables, F1(x), F2(x), F3(x) their distribution functions,
and f1(x) = F ′

1(x), f2(x) = F ′
2(x), f3(x) = F ′

3(x)
their density functions. The density function g(x) of
MED(x1, x2, x3) is given by

g(x) =
3∑

i=1

gi(x), (26)

where

g1(x) = f1(x)F2(x)
[
1 − F3(x)

]

+ f1(x)F3(x)
[
1 − F2(x)

]
,

g2(x) = f2(x)F1(x)
[
1 − F3(x)

]

+ f2(x)F3(x)
[
1 − F1(x)

]
,

g3(x) = f3(x)F2(x)
[
1 − F1(x)

]

+ f3(x)F1(x)
[
1 − F2(x)

]
. (27)

In our discussion we might encounter the case of the
median operation on five random variables. The general
idea in such circumstances is that the more varying in-
put distribution functions, the more complicated equations
describing the output density functions. Let x1, . . . , x5

be independent random variables, F1(x), . . . , F5(x) their
distribution functions, and f1(x) = F ′

1(x), . . . , f5 = F ′
5
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Table 1. Filters for noise removal from the first sequence with fast motion–Part1.

No. Filter type T mse Blur

0 no filter — 0.0913 yes

1 3DUMMnd — 0.0307 no

2 3DUMMwd 3×3 +2D med[3×3] 0.3 0.0277 no

3 3DUMMwd 3×3 +2D med[3×3] 0.2 0.0271 no

4 3DUMMwd 3×3 +2D med[3×3] 0.05 0.0264 no

5 3DUMMwd 3×3 +2DUMM[3×3] 0.3 0.0393 no

6 3DUMMwd 3×3 +2DUMM[3×3] 0.2 0.0416 no

7 3DUMMwd 3×3 +2DUMM[3×3] 0.05 0.0456 no

8 3DGUMMnd 3×3, r=2 — 0.0091 no

9 3DGUMMwd 3×3, r=2 + 2Dmed[3×3] 0.3 0.0072 no

10 3DGUMMwd 3×3, r=2 + 2Dmed[3×3] 0.2 0.0071 no

11 3DGUMMwd 3×3, r=2 + 2DGUMM[3×3] 0.3 0.0087 no

12 3DGUMMwd 3×3, r=2 + 2Dmed[3×3] 0.2 0.0088 no

13 3DGUMMwd 3×3, r=2 + 2Dmed[3×3] 0.05 0.0090 no

14 3DGUMMnd 5×5, r=1 — 0.0840 no

15 3DGUMMnd 5×5, r=2 — 0.0324 no

16 3DGUMMnd 5×5, r=3 — 0.0092 no

17 3DGUMMwd 5×5, r=2 + 2DGUMM, r=2 0.5 0.0324 no

18 3DGUMMwd 5×5, r=2 + 2DGUMM, r=2 0.3 0.0327 no

19 3DGUMMwd 5×5, r=2 + 2DGUMM, r=2 0.2 0.0331 no

20 3DGUMMwd 5×5, r=2 + 2DGUMM, r=2 0.05 0.0338 no

21 3DGUMMwd 5×5, r=2 + 2Dmed[3×3] 0.2 0.0257 no

22 3DGUMMwd 5×5, r=2 + 2Dmed[3×3] 0.5 0.0287 no

23 3DGUMMwd 5×5, r=3 + 2Dmed[3×3] 0.05 0.0086 no

24 3DGUMMwd 5×5, r=3 + 2Dmed[3×3] 0.2 0.0087 no

25 3DGUMMwd 5×5, r=3 + 2Dmed[3×3] 0.5 0.0089 no

26 3DGUMMwd 5×5, r=3 + 2DGUMM, r=3 0.05 0.0090 no

27 3DGUMMwd 5×5, r=3 + 2DGUMM, r=3 0.2 0.0090 no

28 3DGUMMwd 5×5, r=3 + 2DGUMM, r=3 0.3 0.0090 no

29 3DGUMMwd 5×5, r=3 + 2DGUMM, r=3 0.5 0.0090 no

30 3DGUMMwd 5×5, r=3 + 2DGUMM, r=2 0.05 0.0183 no

31 3DGUMMwd 5×5, r=3 + 2DGUMM, r=2 0.2 0.0161 no

32 3DGUMMwd 5×5, r=3 + 2DGUMM, r=2 0.05 0.0126 no



Image processing for old movies by filters with motion detection 487

Table 2. Filters for noise removal from the first sequence with fast motion–Part2.

No. Filter type T mse2/blur mse4/blur mse1/blur

1 3D+++nd — 0.0045 big — —

2 3D+++wd +2Dmed[3×3] 0.05 0.0043 no 0.0040 min 0.0048 no

3 3D+++wd +2Dmed[3×3] 0.2 0.0045 min 0.0043 big 0.0049 min

4 3D+++wd +2Dmed[3×3] 0.3 0.0046 big 0.0040 big 0.0050 big

5 3D+++wd +2Dmed[3×3] 0.5 0.0048 big 0.0045 min big

6 3DXXXnd — 0.0047 big

7 3DXXXwd +2Dmed[3×3] 0.05 0.0046 no 0.0046 big 0.0048 no

8 3DXXXwd +2Dmed[3×3] 0.2 0.0048 min 0.0046 big 0.0049 min

9 3DXXXwd +2Dmed[3×3] 0.3 0.0050 big 0.0047 big 0.0051 big

10 3DXXXwd +2Dmed[3×3] 0.5 0.0051 big 0.0047 big 0.0052 big

11 3DX+Xnd — 0.0046 severe

12 3DX+Xwd +2Dmed[3×3] 0.05 0.0044 no 0.0042 min 0.0047 no

13 3DX+Xwd +2Dmed[3×3] 0.2 0.0046 min 0.0045 big 0.0048 min

14 3DX+Xwd +2Dmed[3×3] 0.3 0.0047 min 0.0045 big 0.0048 min

15 3DX+Xwd +2Dmed[3×3] 0.5 0.0049 big 0.0046 big 0.0052 big

Table 3. Filters for noise removal from the second
sequence with slow motion.

No. Filter type T mse

1 3DX+Xwd 0.2 0.0042

2 3D+++wd 0.2 0.0032

3 3XXX wd 0.2 0.0046

4 3DTMM wd — 0.0103

5 3DGUMMwd 3×3, r=3+2DGUMM, r=2 0.02 0.0076

their density functions. The density function g(x) of
MED(x1, . . . , x5) is given by

g1(x) =
5∑

i=1

gi(x), (28)

where

g1(x) = f1(x)F2(x)F3(x)
[
1 − F4(x)

][
1 − F5(x)

]
+f1(x)F4(x)F5(x)

[
1 − F2(x)

][
1 − F3(x)

]
+f1(x)F2(x)F4(x)

[
1 − F3(x)

][
1 − F5(x)

]
+f1(x)F3(x)F5(x)

[
1 − F2(x)

][
1 − F4(x)

]

+f1(x)F2(x)F5(x)
[
1 − F3(x)

][
1 − F4(x)

]
+f1(x)F3(x)F4(x)

[
1 − F2(x)

][
1 − F5(x)

]
. (29)

The expressions for gk(x), k = 2, . . . , 5, can be ob-
tained from the last equation by exchanging the indices k
and 1. For our deliberations on new bidirectional multi-
stage median filters, we can assume that we deal with i.i.d.
random variables for each frame k − 1, k, k + 1, so for a
3D+++ filter we have

gk−1 = 30f(x)F 2
k−1(x)

[
1 − Fk−1(x)

]2

,

gk = 30f(x)F 2
k (x)

[
1 − Fk(x)

]2

, (30)

gk+1 = 30f(x)F 2
k+1(x)

[
1 − Fk+1(x)

]2

.

Having in mind that gk−1 = F ′
k−1, gk = F ′

k, and gk+1 =
F ′

k+1, we can write

gfinal(x) =
3∑

i=1

gi(x), (31)

where

g1(x) = gk−1Fk(x)
[
1 − Fk+1(x)

]
+ gk−1(x)Fk+1(x)

[
1 − Fk(x)

]
,
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g2(x) = gkFk−1(x)
[
1 − Fk+1(x)

]
+ gk(x)Fk+1(x)

[
1 − Fk−1(x)

]
, (32)

g3(x) = gk+1Fk(x)
[
1 − Fk−1(x)

]
+ gk+1(x)Fk−1(x)

[
1 − Fk(x)

]
.

By using those expressions it is possible to calculate the
distribututions of the 1 level median filter, but those equa-
tions cannot be applied to multilevel median filters be-
cause the median operator is employed many times and
input variables are no longer independent.

9. Experiments

Two sequences from old movies were used. The first one
with significant motion with heavy impulsive noise (ar-
tificial impulsive noise from Matlab – Ver 0.3). Several
filters including newly elaborated ones were tested. The
second sequence (little motion – the right hand of a sitting
person is moving slowly) was also degraded by impulsive
noise (var 0.3). As the main procedure, a method taking
into account a pixel + 1 of any of its neighbors in the four
connectivity scheme (grid) was used. However, in some
cases only one pixel itself in each frame + all four of its
neighbors were used for motion detection purposes. In ta-
bles, ‘wd’ means ‘with motion detection’, ‘nd’ means ‘no
detection’. For simplicity, instead of selecting two differ-
ent parameters T1 and T2, only one threshold value was
chosen, so that T1 = T2 = T .

10. Conclusions

A comparison of results for filters known from the litera-
ture and newly elaborated filters was performed. The new
bidirectional filters were most effective but also quite sen-
sitive to motion detection errors. The motion detection
procedure taking advantage of one pixel plus any of its
neighbors (for each frame) for motion detection was the
most effective one. In some cases, 2D filters (intraframe)
were slightly better than 3D filters of the same type, prob-
ably due to the problems with perfect motion detection
(weak contrast, severe noise). The most popular mean-
squared error criterion for comparing the performances of
different filters was chosen. Yet this criterion is not al-
ways representative, especially in some cases of fast mo-
tion, and the human visual system criterion is always de-
cisive, but very difficult to be formulated precisely by a
proper mathematical expression. In the case of slow mo-
tion, the mse criterion was acceptable. The optical crite-
rion shows the superiority of the newly elaborated filters

over the existing ones (compare, for instance, the results
of applying the 3D+++ filter vs. the results obtained by
3DTMM – known from the literature and effective – see
preserved details and reduced noise). The results of a sta-
tistical analysis of the new multilevel median filters will
not give satisfying results due to the statistical dependence
of variables of higher levels. Therefore, in the author’s
opinion, the most reasonable choice is to use computer
simulations of different filters and take into account the
visual quality of the images.

11. Results

Fig. 1. Original frame.

Fig. 2. Frame with impulsive noise.
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Fig. 10. 3Dclose–open filter with m.d. by using the current
pixel and at least one neighbor, T =1.2.

Fig. 11. Original frame.

Fig. 12. Original frame degraded by impulsive noise.

Fig. 13. Frame restored using the 3D+++ filter with mo-
tion detection (all four neighbors), T = 0.2.

Fig. 14. Frame restored using the 3DTMM filter.
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Fig. 15. Frame restored using the 3DGUMM filter
with motion detection.

Fig. 16. Frame restored using the two-level multistage
median filter with motion detection.
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